简单介绍一下现代数学的发展

作者&投稿:实苇 (若有异议请与网页底部的电邮联系)
概述近现代数学的发展史~

--《近现代数学发展概论》张光远重庆出版社 1991.12版

《现代化知识文库--二十世纪数学史话》知识出版社 1984.2上海
注一:这是《二十世纪数学史话》的说法。
winion整理,如要转载,请注明转载自
国际数学界的最高奖?菲尔兹奖和国际数学家大会
诺贝尔奖金中为什么没有设数学奖?对此人们一直有着各种猜测与议论。每年一度的诺贝尔物理、化学、生理学和医学奖,表彰了这几个学科中的重大成就,奖掖了科学精英,可谓举世瞩目。不设数学奖,对于这个重要的基础学科,岂不是失去了一个在世界范围内评价重大成就和杰出人才的机会?
其实,数学领域中也有一种世界性的奖励,这就是每四年颁发一次的菲尔兹奖。在各国数学家的眼里,菲尔兹奖所带来的荣誉可与诺贝尔奖金媲美。
菲尔兹奖是由国际数学联盟(简称IMU)主持评定的,并且只在每四年召开一次的国际数学家大会(简称ICM)上颁发。菲尔兹奖的权威性,部分地即来自于此。所以,这里先简单介绍一下“联盟”与“大会”。

十九世纪以来,数学取得了巨大的进展。新思想、新概念、新方法、新结果层出不穷。面对琳琅满目的新文献,连第一流的数学家也深感有国际交流的必要。他们迫切希望直接沟通,以便尽快把握发展大势。正是在这样的情况下,第一次国际数学家大会在苏黎世召开了。紧接着,一九00年又在巴黎召开了第二次会议,在两个世纪的交接点上,德国数学家希尔伯特提出了承前启后的二十三个数学问题,使得这次大会成为名副其实的迎接新世纪的会议。

自一九00年以后,大会一般每四年召开一次。只是因为世界大战的影响,在一九一六年和一九四0~一九五0年间中断举行。第二次世界大战以后的第一次大会是一九五0年在美国举行的。在这次会议前夕,国际数学联盟成立了。这个联盟联络了全世界几乎所有的主要数学家,她的主要任务是促进数学事业的发展和国际交流,组织进行四年一次的国际数学家大会及其他专业性国际会议,颁发菲尔兹奖。自此以后,大会的召开比较正常。从一八九七年算起,总共举行了十九次大会,其中有九次是在一九五0~一九八三年间举行的。

联盟的日常事务由任期四年的执行委员会领导进行,近年来,这个委员会设主席一人,副主席二人,秘书长一人,一般委员五人,都是由在国际数坛上有影响的著名数学家担任。每次大会的议程,由执委会提名一个九人咨询委员会来编定。而菲尔兹奖的获奖人,则由执委会提名一个八人评定委员会来遴选。评委会的主席也就是执委会的主席,可见对这个奖的重视。这个评委会首先由每人提名,集中提出近四十个值得认真考虑的候选人,然后进行充分的讨论并广泛听取各国数学家的意见,最后在评定委员会内部投票决定本届菲尔兹奖的得奖人。


现在,国际数学家大会已是全世界数学家最重要的学术交流盛会了。一九五0年以来,每次参加者都在两千人以上,最近两次大会的参加者更在三千人以上。这么多的参加者再加上这四年来无数的新成果,用什么方法才能很好地交流呢?近几次大会采取了分三个层次讲演的办法。以一九七八年为例,在各专业小组中自行申请作十分钟讲演的约有七百人,然后由咨询委员会确定在各专业组中作四十五分钟邀请讲演的名单约二百个,以及向全会作一小时综述报告的人选十七位。被指定作一小时报告是一种殊荣,报告者是当今最活跃的一些数学家,其中有不少是过去或未来的菲尔兹奖获得者。

菲尔兹奖的宣布与授予,是开幕式的主要内容。当执委会主席(即评委会主席)宣布本届得主名单之后,全场掌声雷动。接着由东道国的重要人士(当地市长、所在国科学院院长、甚至国王、总统),或评委会主席授予一块金质奖章,外加一干五百美元的奖金。最后由一些权威的数学家来介绍得奖人的杰出工作,并以此结束开幕式。

菲尔兹奖是以已故的加拿大数学家约翰?查尔斯?菲尔兹命名的。

一八六三年五月十四日,菲尔兹生子加拿大渥太华。他十一岁时父亲逝世,十八岁时又失去了慈母,家境不算太好。菲尔兹十七岁时进入多伦多大学专攻数学。一八八七年,菲尔兹二十四岁,就在美国约翰.霍普金斯大学获得了博士学位。又过了两年,他在美国阿勒格尼大学当上了教授。

当时,世界数学的中心是在欧洲。北美的数学家差不多都要到欧洲学习、工作一段时间。一八九二年,菲尔兹远渡重洋,游学巴黎、柏林整整十年。在欧洲,他与福雪斯、弗劳伯纽斯等著名数学家有密切的交往。这一段经历,大大地开阔了菲尔兹的眼界。

作为一个数学家,菲尔兹的工作兴趣集中在代数函数方面,成就不算突出,但作为一名数学事业的组织、管理者,菲尔兹却是功绩卓著的。

菲尔兹很早就意识到研究生教育的重要,他是在加拿大推进研究生教育的第一人。现在人们都知道,一个国家的研究生培养情况如何,是衡量这个国家科学水平的一个可靠指数。而在当时,能有这样的认识实属难能可贵。

菲尔兹对于数学的国际交流的重要性,对于促进北美州数学的发展,都有一些卓越的见解。为了使北美的数学迅速赶上欧洲,菲尔兹竭尽全力主持筹备了一九二四年的多伦多国际数学家大会(这是在欧洲之外召开的第一次大会)。这次大会使他精疲力尽,健康状况再也没有好转,但这次会议对于北美的数学水平的成长产生了深远的影响。

一九二四年大会没有邀请德国等第一次世界大战的战败国的数学家。在此之前的一九二0年大会,因为是在法国的斯特拉斯堡(战前属德国)举行,德国拒绝参加(一九二八年的波伦亚大会只是由于希尔伯特坚持,德国才参加了。)。这些事情很可能触发了菲尔兹发起一项国际性奖金的念头,因为菲尔兹强烈地主张数学发展应该是国际性的。当菲尔兹知道了一九二四年大会的经费有结余时,他就建议以此作为基金设立一项这样的奖。菲尔兹奔走欧美谋求支持,并想在?九三二年苏黎世大会亲自提出正式建议,结果未及开幕他就逝世了。是多伦多大学数学系的悉涅,把这个建议和一大笔钱(其中包括一九二四年大会的结余和菲尔兹的遗产)提交苏黎世大会,大会立即接受了这一建议。

按照菲尔兹的意见,这项奖金应该就叫国际奖金,而不应该以任何国家机构或个人的名字来命名。但是国际数学家大会还是决定命名为菲尔兹奖。数学家们希望用这一方式来表示对菲尔兹的纪念和赞许,他不是以自已的研究工作,而是以远见、组织才能和勤恳的工作促进了本世纪的数学事业。

第一次菲尔兹奖颁发于一九三六年。不久,国际形势急剧恶化。原定一九四0年在美国召开的大会已成泡影。第二次的菲尔兹奖是在战后的第一次大会,即一九五0年大会上颁发的。以后,每次大会都顺利地进行了这一议程。?般是每届两名获奖者。但一九六六年、一九七0年、一九七八年得奖人是四名,据说是因为有一位不愿透露姓名的捐款人,使奖金可以临时增加到四份,一九八二年华沙会议因故而延期至一九八三年八月举行,获奖者为三名。总起来,获得菲尔兹奖的数学家己有二十七名。

在一九三六年、?九五0年、一九五四年这三次大会上,都是由一位数学家来介绍所有得奖人的工作的。一九三六年卡拉凯渥铎利还讲了一点获奖者的生平。一九五0年评委会主席玻尔就只用清晰而非专门的语言简述工作。一九五四年,由本世纪著名的数学家外尔介绍,他在结束语中盛赞两位得奖者“所达到的高度是自己未曾梦想到的”,“自已从未见过这样的明星在数学天空中灿烂地升起,”他说:“数学界为你们二位所做的工作感到骄傲。它表明数学这棵长满节瘤的老树仍然充满着汁液和生机。你们是怎样开始的,就怎样继续下去吧!”

从一九五八年起,改成每位获奖者分别由一位数学家介绍。介绍的内容比较地局限于工作,对于获奖者个人的情况很少涉及。这个做法,一直延续到最近一次大会。

菲尔兹奖只是一枚金质奖章,与诺贝尔奖金的十万美元相比真是微不足道。为什么在人们心目中,菲尔兹奖的地位竟然与诺贝尔奖金相当?

原因看来很多。菲尔兹奖是由数学界的国际学术团体--国际数学联盟,从全世界的第一流数学家中遴选的。就权威性与国际性而言,任何其他的奖励都无法与之相比。菲尔兹奖四年才发一次,每次至多四名,因而获奖机会比诺贝尔奖要少得多。但是主要的原因应该是:迄今为止的获奖者用他们的杰出工作,证明了菲尔兹奖不愧为最重要的国际数学奖。事情就是这样:从表面上看,一项奖赏为获奖人带来了巨大荣誉;而事实上正相反,正是得奖工作的水准奠定了这项奖励的学术地位的基础。

菲尔兹奖首先是一项工作奖(这一点与诺贝尔奖金相同),即授予的原因只能是“已经做出的成就”,而不能是服务优秀、活动积极等其他原因。但是菲尔兹奖只授予四十岁以下的数学家(起先是一种默契,后来就成为不成文的规定),因此也带有一点鼓励性。问题在于,如果放在整个数学家的范围里,菲尔兹奖的得奖工作地位如何?

我们只举一个小小的例子。一九七八年,当代著名的老一辈数学家,布尔巴基学派创始人之一丢东涅发表了一篇题为《论纯数学的当前趋势》的论文,对于近二十年来纯数学各分支的前沿作了全面概述。在文章中,他列举了十三个目前处于主流的数学分支。其中十二个分支中的部分重要工作是由菲尔兹奖获得者作出的。这再清楚不过地说明了菲尔兹奖获奖成就的地位。

人们不能不承认,数学对于现实生活的影晌正在与日俱增。许多学科都在悄悄地或先或后地经历着一场数学化的进程。现在,已经没有哪个领域能够抵御得住数学方法的渗透。

数学本身也在一日千里地发展着。全世界成千上万的数学工作者正在几十个分支成百个专门方向上孜孜研究着。他们每年提出大约二十万条新定理!重要论文数,如以《数学评论》的摘要为准,每八至十年翻一番。文献数量的爆炸再加上方法概念的迅速更新,使得工作在不同方向上的数学家连交谈也有点困难,更不用说非数学专业的人了。

这样就产生了一个尖锐的矛盾。一方面,公众非常需要数学,他们渴望理解数学!另?方面,现代数学过于深刻、庞大、变得越来越不容易接近。

因此,对于数学,特别是现代数学加以普及,使得数学和数学家的工作能对现实生活产生应有的积极影响,这已成为人们日益重视的课题。

二十一世纪的曙光即将普照全球,要概述一下二十世纪的数学发展决非易事。就纯粹数学而言,我们觉得有两个主题可以起到提纲挈领的作用:一个是希尔伯特二十三问题的提出、解决现状与发展,另一个就是菲尔兹奖的获奖者及其工作。

作为一种表彰纯数学成就的奖励,菲尔兹奖当然不能体现现代数学的全部内容。就这个奖本身而言也有种种缺点。但是,无论从哪一方面讲,菲尔兹奖的获得者都可以作为当代数学家的代表,他们的工作所属的领域大体上覆盖了纯粹数学主流分支的前沿。这样,菲尔兹奖就成了一个窥视现代数学面貌的很好的“窗口”。

我叫陈华,我能回答!!现代数学时期
现代数学时期是指由19世纪20年代至今,这一时期数学主要研究的是最一般的数量关系和空间形式,数和量仅仅是它的极特殊的情形,通常的一维、二维、三维空间的几何形象也仅仅是特殊情形。抽象代数、拓扑学、泛函分析是整个现代数学科学的主体部分。它们是大学数学专业的课程,非数学专业也要具备其中某些知识。变量数学时期新兴起的许多学科,蓬勃地向前发展,内容和方法不断地充实、扩大和深入。

18、19世纪之交,数学已经达到丰沛茂密的境地,似乎数学的宝藏已经挖掘殆尽,再没有多大的发展余地了。然而,这只是暴风雨前夕的宁静。19世纪20年代,数学革命的狂飙终于来临了,数学开始了一连串本质的变化,从此数学又迈入了一个新的时期——现代数学时期。

19世纪前半叶,数学上出现两项革命性的发现——非欧几何与不可交换代数。

大约在1826年,人们发现了与通常的欧几里得几何不同的、但也是正确的几何——非欧几何。这是由罗巴契夫斯基和里耶首先提出的。非欧几何的出现,改变了人们认为欧氏几何唯一地存在是天经地义的观点。它的革命思想不仅为新几何学开辟了道路,而且是20世纪相对论产生的前奏和准备。

后来证明,非欧几何所导致的思想解放对现代数学和现代科学有着极为重要的意义,因为人类终于开始突破感官的局限而深入到自然的更深刻的本质。从这个意义上说,为确立和发展非欧几何贡献了一生的罗巴契夫斯基不愧为现代科学的先驱者。

1854年,黎曼推广了空间的概念,开创了几何学一片更广阔的领域——黎曼几何学。非欧几何学的发现还促进了公理方法的深入探讨,研究可以作为基础的概念和原则,分析公理的完全性、相容性和独立性等问题。1899年,希尔伯特对此作了重大贡献。

在1843年,哈密顿发现了一种乘法交换律不成立的代数——四元数代数。不可交换代数的出现,改变了人们认为存在与一般的算术代数不同的代数是不可思议的观点。它的革命思想打开了近代代数的大门。

另一方面,由于一元方程根式求解条件的探究,引进了群的概念。19世纪20~30年代,阿贝尔和伽罗华开创了近世代数学的研究。近代代数是相对古典代数来说的,古典代数的内容是以讨论方程的解法为中心的。群论之后,多种代数系统(环、域、格、布尔代数、线性空间等)被建立。这时,代数学的研究对象扩大为向量、矩阵,等等,并渐渐转向代数系统结构本身的研究。

上述两大事件和它们引起的发展,被称为几何学的解放和代数学的解放。

19世纪还发生了第三个有深远意义的数学事件:分析的算术化。1874年威尔斯特拉斯提出了一个引人注目的例子,要求人们对分析基础作更深刻的理解。他提出了被称为“分析的算术化”的著名设想,实数系本身最先应该严格化,然后分析的所有概念应该由此数系导出。他和后继者们使这个设想基本上得以实现,使今天的全部分析可以从表明实数系特征的一个公设集中逻辑地推导出来。

现代数学家们的研究,远远超出了把实数系作为分析基础的设想。欧几里得几何通过其分析的解释,也可以放在实数系中;如果欧氏几何是相容的,则几何的多数分支是相容的。实数系(或某部分)可以用来解群代数的众多分支;可使大量的代数相容性依赖于实数系的相容性。事实上,可以说:如果实数系是相容的,则现存的全部数学也是相容的。

19世纪后期,由于狄德金、康托和皮亚诺的工作,这些数学基础已经建立在更简单、更基础的自然数系之上。即他们证明了实数系(由此导出多种数学)能从确立自然数系的公设集中导出。20世纪初期,证明了自然数可用集合论概念来定义,因而各种数学能以集合论为基础来讲述。

拓扑学开始是几何学的一个分支,但是直到20世纪的第二个1/4世纪,它才得到了推广。拓扑学可以粗略地定义为对于连续性的数学研究。科学家们认识到:任何事物的集合,不管是点的集合、数的集合、代数实体的集合、函数的集合或非数学对象的集合,都能在某种意义上构成拓扑空间。拓扑学的概念和理论,已经成功地应用于电磁学和物理学的研究。

20世纪有许多数学著作曾致力于仔细考查数学的逻辑基础和结构,这反过来导致公理学的产生,即对于公设集合及其性质的研究。许多数学概念经受了重大的变革和推广,并且像集合论、近世代数学和拓扑学这样深奥的基础学科也得到广泛发展。一般(或抽象)集合论导致的一些意义深远而困扰人们的悖论,迫切需要得到处理。逻辑本身作为在数学上以承认的前提去得出结论的工具,被认真地检查,从而产生了数理逻辑。逻辑与哲学的多种关系,导致数学哲学的各种不同学派的出现。

20世纪40~50年代,世界科学史上发生了三件惊天动地的大事,即原子能的利用、电子计算机的发明和空间技术的兴起。此外还出现了许多新的情况,促使数学发生急剧的变化。这些情况是:现代科学技术研究的对象,日益超出人类的感官范围以外,向高温、高压、高速、高强度、远距离、自动化发展。以长度单位为例、小到1尘(毫微微米,即10^-15米),大到100万秒差距(325.8万光年)。这些测量和研究都不能依赖于感官的直接经验,越来越多地要依靠理论计算的指导。其次是科学实验的规模空前扩大,一个大型的实验,要耗费大量的人力和物力。为了减少浪费和避免盲目性,迫切需要精确的理论分机和设计。再次是现代科学技术日益趋向定量化,各个科学技术领域,都需要使用数学工具。数学几乎渗透到所有的科学部门中去,从而形成了许多边缘数学学科,例如生物数学、生物统计学、数理生物学、数理语言学等等。

上述情况使得数学发展呈现出一些比较明显的特点,可以简单地归纳为三个方面:计算机科学的形成,应用数学出现众多的新分支、纯粹数学有若干重大的突破。

1945年,第一台电子计算机诞生以后,由于电子计算机应用广泛、影响巨大,围绕它很自然要形成一门庞大的科学。粗略地说,计算机科学是对计算机体系、软件和某些特殊应用进行探索和理论研究的一门科学。计算数学可以归入计算机科学之中,但它也可以算是一门应用数学。

计算机的设计与制造的大部分工作,通常是计算机工程或电子工程的事。软件是指解题的程序、程序语言、编制程序的方法等。研究软件需要使用数理逻辑、代数、数理语言学、组合理论、图论、计算方法等很多的数学工具。目前电子计算机的应用已达数千种,还有不断增加的趋势。但只有某些特殊应用才归入计算机科学之中,例如机器翻译、人工智能、机器证明、图形识别、图象处理等。

应用数学和纯粹数学(或基础理论)从来就没有严格的界限。大体上说,纯粹数学是数学的这一部分,它暂时不考虑对其它知识领域或生产实践上的直接应用,它间接地推动有关学科的发展或者在若干年后才发现其直接应用;而应用数学,可以说是纯粹数学与科学技术之间的桥梁。

20世纪40年代以后,涌现出了大量新的应用数学科目,内容的丰富、应用的广泛、名目的繁多都是史无前例的。例如对策论、规划论、排队论、最优化方法、运筹学、信息论、控制论、系统分析、可靠性理论等。这些分支所研究的范围和互相间的关系很难划清,也有的因为用了很多概率统计的工具,又可以看作概率统计的新应用或新分支,还有的可以归入计算机科学之中等等。

20世纪40年代以后,基础理论也有了飞速的发展,出现许多突破性的工作,解决了一些带根本性质的问题。在这过程中引入了新的概念、新的方法,推动了整个数学前进。例如,希尔伯特1990年在国际教学家大会上提出的尚待解决的23个问题中,有些问题得到了解决。60年代以来,还出现了如非标准分析、模糊数学、突变理论等新兴的数学分支。此外,近几十年来经典数学也获得了巨大进展,如概率论、数理统计、解析数论、微分几何、代数几何、微分方程、因数论、泛函分析、数理逻辑等等。

当代数学的研究成果,有了几乎爆炸性的增长。刊载数学论文的杂志,在17世纪末以前,只有17种(最初的出于1665年);18世纪有210种;19世纪有950种。20世纪的统计数字更为增长。在本世纪初,每年发表的数学论文不过1000篇;到1960年,美国《数学评论》发表的论文摘要是7824篇,到1973年为20410篇,1979年已达52812篇,文献呈指数式增长之势。数学的三大特点—高度抽象性、应用广泛性、体系严谨性,更加明显地表露出来。

今天,差不多每个国家都有自己的数学学会,而且许多国家还有致力于各种水平的数学教育的团体。它们已经成为推动数学发展的有力因素之一。目前数学还有加速发展的趋势,这是过去任何一个时期所不能比拟的。

现代数学虽然呈现出多姿多彩的局面,但是它的主要特点可以概括如下:(1)数学的对象、内容在深度和广度上都有了很大的发展,分析学、代数学、几何学的思想、理论和方法都发生了惊人的变化,数学的不断分化,不断综合的趋势都在加强。(2)电子计算机进入数学领域,产生巨大而深远的影响。(3)数学渗透到几乎所有的科学领域,并且起着越来越大的作用,纯粹数学不断向纵深发展,数理逻辑和数学基础已经成为整个数学大厦基础。

以上简要地介绍了数学在古代、近代、现代三个大的发展时期的情况。如果把数学研究比喻为研究“飞”,那么第一个时期主要研究飞鸟的几张相片(静止、常量);第二个时期主要研究飞鸟的几部电影(运动、变量);第三个时期主要研究飞鸟、飞机、飞船等等的所具有的一般性质(抽象、集合)。

这是一个由简单到复杂、由具体到抽象、由低级向高级、由特殊到一般的发展过程。如果从几何学的范畴来看,那么欧氏几何学、解析几何学和非欧几何学就可以作为数学三大发展时期的有代表性的成果;而欧几里得、笛卡儿和罗巴契夫斯基更是可以作为各时期的代表人物。

上网搜下多的是啊

数学 分类参考

◆ 数学史
* 中国数学史
* 外国数学史:巴比伦数学,埃及古代数学,希腊古代数学,印度古代数学,玛雅数学,阿拉伯数学,欧洲中世纪数学,十六、十七世纪数学,十八世纪数学,十九世纪数学。
* 中国数学家:刘徽 祖冲之 祖暅 王孝通 李冶 秦九韶 杨辉 王恂 郭守敬 朱世杰 程大位 徐光启 梅文鼎 年希尧 明安图 汪莱 李锐 项名达 戴煦 李善兰 华蘅芳 姜立夫 钱宝琮 李俨 陈建功 熊庆来 苏步青 江泽涵 许宝騄 华罗庚 陈省身 林家翘 吴文俊 陈景润 丘成桐
* 国外数字家:泰勒斯 毕达哥拉斯 欧多克索斯 欧几里得 阿基米德 阿波罗尼奥斯 丢番图 帕普斯 许帕提娅 阿耶波多第一 博伊西斯,A.M.S. 婆罗摩笈多 花拉子米 巴塔尼 阿布·瓦法 奥马·海亚姆 婆什迦罗第二 斐波那契,L. 纳西尔丁·图西 布雷德沃丁,T. 奥尔斯姆,N. 卡西 雷格蒙塔努斯,J. 塔尔塔利亚,N. 卡尔达诺,G. 费拉里,L. 邦贝利,R. 韦达,F. 斯蒂文,S. 纳皮尔,J. 德扎格,G. 笛卡尔,R. 卡瓦列里,(F)B. 费马,P.de 沃利斯,J. 帕斯卡,B. 巴罗,I. 格雷果里,J. 関孝和 牛顿,I. 莱布尼茨,G.W. 洛必达,G.-F.-A.de 伯努利家族 棣莫弗,A. 泰勒,B. 马克劳林,C. 欧拉,L. 克莱罗,A.-C. 达朗贝尔,J.le R. 蒙蒂克拉,J.E. 朗伯,J.H. 贝祖,E. 拉格朗日,J.-L. 蒙日,G. 拉普拉斯,P.-S. 勒让德,A.-M. 傅里叶,J.-B.-J. 热尔岗,J.-D. 高斯,C.F. 泊松,S.-D. 波尔查诺,B. 贝塞尔,F.W. 彭赛列,J.-V. 柯西,A.-L. 麦比乌斯,A.F. 皮科克,G. 罗巴切夫斯基 格林,G 沙勒,M. 拉梅,G. 施泰纳,J. 施陶特,K.G.C.von 普吕克,J. 奥斯特罗格拉茨基,M.B. 阿贝尔,N.H. 波尔约,J. 斯图姆,C.-F. 雅可比,C.G.J. 狄利克雷,P.G.L. 哈密顿,W.R. 德·摩根,A. 刘维尔,J. 格拉斯曼,H.G. 库默尔,E.E. 伽罗瓦,E. 西尔维斯特,J.J. 外尔斯特拉斯,K.(T.W.) 布尔,G. 斯托克斯,G.G. 切比雪夫 凯莱,A. 埃尔米特,C. 艾森斯坦,F.G.M. 贝蒂,E. 克罗内克,L. 黎曼,(G.F.)B. 康托尔,M.B. 克里斯托费尔,E.B. 戴德金(J.W.)R. 杜布瓦-雷P.D.G. 诺伊曼,C.G.von 李普希茨,R.(O.S.). 克莱布什,R.F.A. 富克斯,I.L. 贝尔特拉米,E. 哥尔丹,P.A. 若尔当,C. 韦伯,H. 达布,(J.-)G. 李,M.S. 施瓦兹,H.A. 诺特,M. 康托尔,G.(F.P.) 克利福德,W.K. 米塔-列夫勒,(M.)G. 弗雷格,(F.L.)G. 克莱因,(C.)F. 弗罗贝尼乌斯,F.G. 柯瓦列夫斯卡娅,C.B. 亥维赛,O. 里奇,G. 庞加莱,(J.-)H. 马尔可夫,A.A. 皮卡,(C.-)E. 斯蒂尔杰斯,T.(J.) 李亚普诺夫,A.M. 皮亚诺,G. 胡尔维茨,A. 沃尔泰拉,V. 亨泽尔,K. 希尔伯特,D. 班勒卫,P. 闵科夫斯基,H. 阿达尔,J.(-S.) 弗雷德霍姆,(E.)I. 豪斯多夫,F. 嘉当,E.(-J.) 波莱尔,(F.-E.-J.-E) 策梅洛,E.F.F. 罗素,B.A.W. 列维-齐维塔,T. 卡拉西奥多里,C. 高木贞治 勒贝格,H.L. 哈代,G.H. 弗雷歇,M.-R. 富比尼,G. 里斯,F.(F.) 伯恩施坦,C.H. 布劳威尔,L.E.J. 诺特,(A.)E. 米泽斯,R.von 卢津,H.H. 伯克霍夫,G.D. 莱夫谢茨,S. 李特尔伍德,J.E. 外尔,(C.H.)H. 莱维,P. 赫克,E. 拉马努金,S.A. 费希尔,R.A. 维诺克拉多夫 莫尔斯 巴拿赫,S. 辛钦 霍普夫,H. 维纳,N. 奈望林纳,R. 西格尔,C.L. 阿廷,E. 哈塞,H. 扎里斯基,O. 博赫纳,S. 布饶尔,R.(D.) 塔尔斯基,A. 瓦尔德,A. 柯尔莫哥洛夫,A.H. 冯·诺伊曼,J. 嘉当,H. 卢伊,H. 哥德尔,K. 韦伊,A. 勒雷,.J. 惠特尼,H. 克列因 阿尔福斯,L.V. 庞特里亚金 谢瓦莱,C. 坎托罗维奇 盖尔范德 爱尔特希 施瓦尔茨 小平邦彦。
* 数字著作:《算数书》《算经十书》《周髀算经》《九章算术》《海岛算经》《孙子算经》《张丘建算经》《五曹算经》《五经算术》《缀术》《数术记遗》《夏侯阳算经》《缉古算经》《数理精蕴》《畴人传》《数书九章》《测圆海镜》《益古演段》《四元玉鉴》《算法统宗》《则古昔斋算学》《几何原本》《自然哲学的数学原理》《几何基础》
* 中国古代数学计算方法:筹算,珠算,孙子剩余定理,增乘开方法,贾宪三角,招差法,盈不足术,百鸡术。
* 其他:纵横图,记数法,黄金分割,希腊几何三大问题,计算工具,和算,费尔兹奖,沃尔夫奖,希尔伯特数学问题,国际数学教育委员会,国际数学联合会,国际数学家大会,数学刊物,中国数学教育,中国数学研究机构,中国数学会。

◆ 数学基础:逻辑主义,形式主义,直觉主义。

◆ 数理逻辑
* 逻辑演算:命题、一阶、高阶、无穷、多值-模糊、模态、构造逻辑等。
* 模型论:模态模型论,非标准模型等。
* 公理集合论:集合论公理系统,力迫方法,选择公理,连续统假设等。
* 逆归论:算法,递归函数,递归可枚举集,不可解度,广义递归论,判断问题,分层理论等。
* 证明论:数学无矛盾性,哥德尔不完备性定理,构造性数学,希尔伯计划等。

◆ 集合论:集合,映射,序数,基数,超限归纳法,悖论,数系(实数,虚数),组合数学,图论(四色问题)、算术等。

◆ 代数学
* 多项式:代数方程等。
* 线性代数:行列式,线性方程组,矩阵,自向量空间,欧几里得空间,线性变换,线性型,二次性,多重线性代数等。
* 群:有限群、多面群体、置换群、群表示论、有限单群等。
* 无限群:交换群,典型群,线性代数群,拓扑群,李群,变换群,算术群,半群等。
* 环:交换环,交换代数,结合代数,非结合代数-李代数,模,格-布尔代数等。
* 乏代数 * 范畴
* 同调代数-代数理论
* 域:代数扩张,超越扩张,伽罗瓦理论-代数基本定理,序域,赋值,代数函数域,有限域,p进数域等。

◆ 数论
* 初等数论:整除,同余,二次剩余,连分数,完全数,费马数,梅森数,伯努利数,数论函数,抽屉原理等。
* 不定方程:费马大定理等。
* 解析数论:筛法,素分布法,黎曼ζ函数,狄利克雷特征,狄利克雷L函数,堆垒数论-整数分拆,格点问题,欧拉常数等。
* 代数数论:库默尔扩张,分圆域,类域论等。
* 数的几何 * 丢番图逼近 * 一致分布 * 超越数论 * 概率数论 * 模型式论 * 二次型的算术理论 * 代数几何

◆ 几何学
* 欧几里得几何学-希尔伯特公理系统:欧里几得空间,坐标系,圆周率,多边形,多面体等。
* 解析几何学:直线,平面,二次曲线,二次曲面,二次曲线束,二次曲面束,初等几何变换,几何度量等。
* 三角学
* 综合几何学:尺规作图-希腊几何三大问题等。
* 仿射几何学:仿射变换等。
* 射影几何学:对偶原理,射影坐标,射影测度,绝对形,交比-圆点,直线几何等。
* 埃尔朗根纲领 * 百欧几里得几何学
* 微分几何学:曲线,曲面-直纹面-可展曲面-极小曲面等。
* 微分流形:张量,张量分析,外微分形式,流形上的偏微分算子,复流形,辛流形,黎曼几何学,常曲率黎曼空间-齐性空间-黎曼流形的变换群-闵科夫斯基空间,广义相对论,联络论,杨-米尔斯理论,射影微分几何学,仿射微分几何学,一般空间微分几何学,线汇论,积分几何学等。

◆ 拓扑学
* 一般拓扑学(拓扑空间,度量空间,维数,多值映射
* 代数拓扑学(同调论,同伦论-CW复形,纤维丛-复叠空间,不动点理论-闭曲面的分类-庞加莱猜想
* 微分拓扑学(流形-横截性
* 纽结理论 * 可微映射的奇点理论 * 突变理论 * 莫尔斯理论

◆ 分析学
* 微积分学
** 函数:初等函数,隐函数等。
** 极限:函数的连续性等。
** 级数
** 微分学:导数,微分,中值定理,极值等。
** 积分学:积分,原函数,积分法,广义积分,含参变量积分等。
** 多元微积分学:偏导数,全微分,方向导数,雅可比矩阵,雅可比行列式,向量,向量分析,场论等。
* 复变函数论:复变函数(解析函数,柯西积分定理,解析函数项级数,幂级数,泰勒级数,洛朗级数,留数,调和函数,最大模原理,共形映射,特殊函数,整函数,亚纯函数,解析开拓,椭圆函数,代数函数,模函数,函数值分布论,黎曼曲线,单叶函数,正规族,拟共形映射,解析函数边值问题,狄利克雷级数,解析函数边界性质,拉普拉斯变换,积分变换,泰希米勒空间,广义解析几何等)。
* 多复变函数论
* 实变函数论:勒贝格积分,有界变差函数,测度论,黎曼-斯蒂尔杰斯积分,赫尔德不等式,施瓦兹不等式,闵科夫斯基不等式,延森不等式等。
* 泛函分析:泛函数,函数空间,索伯列夫空间,拓扑线性空间,巴拿赫空间,半序线性空间,希尔伯特空间,谱论,向量值积分,线性算子,全连续算子,谱算子,线性算子扰动理论,赋范代数,广义函数,非线性算子(泛函积分,算子半群,遍历理论,不变子空间问题)等。
* 变分法:变分法,大范围变分法等。
* 函数逼近论:函数构造论,复变函数逼近(外尔斯特拉斯-斯通定理,拉格朗日插值多项式逼近,埃尔米特插值多项式逼近,三角多项式,连续模,强迫逼近,有理函数逼近,正交多项式,帕德逼近,沃外尔什逼近,联合逼近,抽象逼近,宽度,熵,线性正算子逼近,傅里叶和)等
* 傅里叶分析:三角函数,傅里叶级数,傅里叶变换-积分(傅里叶积分算子,乘子,共轭函数,卢津问题,李特尔伍德-佩利理论,正交系,极大函数,面积积分,奇异积分,算子内插,BMO空间,Hp空间,奇异积分的变换子,佩利-维纳定理,卷积,Ap权),概周期函数,群上调和分析(哈尔测度,正定函数,谱综合)等。
* 流形上的分析:霍奇理论,几何测度论,位势论等。
* 凸分析 * 非标准分析

◆ 微分方程
* 常微分方程(初等常数微分方程,线性常微分方程,常微分方程初值问题,常微分方程边值问题,常微分方程解析理论,常微分方程变换群理论,常微分方程定性理论,常微分方程运动稳定性理论,哈密顿系统,概周期微分方程,抽象空间微分方程,泛函数分方程-微分差分方程,常微分方程摄动方法,常微分方程近似解似解,动力系统-拓扑动力系统-微分动力系统
* 偏微分方程(数学物理方程,一阶偏微分方程,哈密顿-雅可比理论,偏微分方程特征理论,椭圆型偏微分方程-拉普拉斯方程,双曲型偏微分方程-波动方程,双曲守恒律的间断解,抛物型偏微分方程-热传导方程,混合型偏微分方程,孤立子,索伯列夫空间,偏微分方程的基本解,局部可解性,偏微分算子的特征值与特征函数,数学物理中的反问题,自由边界问题,分歧理论,发展方程,不适定问题
* 积分方程:弗雷德霍姆积分方程,沃尔泰拉积分方程,对称核积分方程,奇异积分方程,维纳-霍普夫方程,维纳-霍普夫方法等。

◆ 计算数学
* 数值分析:数值微分等。
* 数值逼近:插值,曲线拟合等。
* 计算几何:样条函数值积分-数论网格求积分法,有限差演算,有限差方程等。
* 常微分方程初值问题数值解法:单步法,多步法,龙格-库塔法,亚当斯法等。
* 常微分方程边值问题数值解法:打靶法等。
* 高次代数方程求根 * 超越方程数值解法
* 非线性方程组数值解法:迭代法,牛顿法等。
* 最优化
* 线性规划:单纯形方法等。
* 无约束优化方法 * 约束优化方法 * 概率统计计算
* 蒙特卡罗达:伪随机数等。
* 代数特征值问题数值解法:广义特征值问题数值解法等。
* 线性代数方程组数值解法:稀疏矩阵,广义逆矩阵,对角优势矩阵,病态矩阵,消元法-高斯消去法,松驰法,共轭梯度法等。
* 偏微分方程边值问题差分方法
* 偏微分方程初值问题差分方法:计算流体力学,特片线法,守恒格式,分步法(局部一维方法、交替方向隐式法、显式差分方法、隐式差分方法),有限差分方法,有限元方法,里茨-加廖金方法(里茨法、加廖金法),玻耳兹曼方程数值解法,算图-诺模图等。
* 数值软件:并行算法,误差,最小二乘法,外推极限法,快速傅里叶变换-快速数论变换,数值稳定性,区间分析,计算复杂性等。

◆ 概率论
* 概率分布(数学期望,方差,矩,正态分布,二项分布,泊松分布
* 随机过程(马尔可夫过程,平稳过程,鞅,独立增量过程,点过程,布朗运动,泊松过程,分支过程,随机积分,随机微分方程,随机过程的极限定理,随机过程统计,滤波,无穷粒子随机系统等。
* 概率,随机变量 * 概率论中的收敛 * 大数律 * 中心极限定理 * 条件期望

◆ 数理统计学
* 参数估计:点估计,区间估计等。
* 假设检验:列联表等。
* 线性统计模型:回归分析,方差分析等。
* 多元统计分析:相关分析等。
* 统计质量管理:控制图,抽样检验,寿命数据统计分析,概率纸等。
* 总体 * 样本 * 统计量 * 实验设计法 * 抽样调查 * 统计推断 * 大样本统计 * 统计决策理论 * 序贯分析
* 非参数统计 * 稳健统计 * 贝叶斯统计 * 时间序列分析 * 随机逼近 * 数据分析

◆ 运筹学
* 数学规则:线性规划,非线性规划,无约束优化方法,约束优化方法,几何规划,整数规划,多目标规划,动态规划-策略迭代法,不动点算法,组合最优化-网络流,投入产出分析等。
* 军事运筹学:彻斯特方程,对抗模拟,对策论,最优化等。
* 马尔可夫决策过程 * 搜索论 * 排队论 * 库存论 * 决策分析 * 可靠性数学理论 * 计算机模拟 * 统筹学 * 优选学

◆ 数学物理

◆ 控制理论

◆ 信息论

◆ 理论计算机科学

◆ 模糊性数学

你知道数学的发展历史吗?
答:4、第四时期:现代数学时期(十九世纪末开始),数学发展的现代阶段的开端,以其所有的基础-代数、几何、分析中的深刻变化为特征。5、中国数学的全盛时期是隋中叶至元后期。任何一个国家科学的发达,都有离不开清平开明的社会环境和雄厚的经济基础。从隋朝中叶到元代末年,由于统治者总结了历代王朝倾覆的...

【数与形的概念】数学发展的历史
答:数学的发展是以数和形两个基本概念为主干的,整个数学就是围绕数与形两个概念的提炼、演变和发展而发展的.数学发展史中—直存在着数与形两条并行不悖的发展路线,一条以发展计算为中心的算术代数路线,一条以发展形为主的几何路线,前者有两个源头,一个源头是独立发展的中国数学,另一源头是古巴比伦数… 【编者按】...

现代意义的数学是怎么产生的?
答:在阿基米德之后,古希腊的数学更加侧重于应用。在天文学发展的促进下,希帕恰斯、梅尼劳斯、托勒密创立了三角学。尼可马修斯写出了第一本专门的数论曲籍——《算术入门》,丢番图则系统地研究了各种方程,特别是各种不定方程。这们,初等数学的各个分支——算术、数论、代数、几何、三角全部建立了起来,这...

数学专业在现代社会中的发展优势是什么?
答:最后,数学专业的学习也培养了学生的团队合作和沟通能力。数学研究往往需要多个人的合作,学生在学习过程中需要与同学一起合作解决问题,这培养了他们的团队合作和沟通能力。在现代社会中,团队合作和沟通能力是非常重要的,因为许多工作都需要与他人合作完成。综上所述,数学专业在现代社会中具有许多发展优势...

数学简史的主要内容
答:书籍介绍:本书作者是世界上最著名的数学史家和教育家之一,他通过本书向读者展示了从古代到近代再到现代数学发展的历史,其中包括数学在东方和西方世界的发展历程。本书第一版因为其通俗易懂、引人入胜,曾获得美国科学史学会颁发的1995年度Watson Davis奖。本书适合作为高等院校数学专业相关课程的教材,...

数学小论文 500字左右
答:同其他科学一样,数学有着它的过去、现在和未来.我们认识它的过去,就是为了了解它的现在和未来.近代数学的发展异常迅速,近30多年来,数学新的理论已经超过了18、19世纪的理论的总和.预计未来的数学成就每“翻一番”要不了10年.所以在认识了数学的过去以后,大致领略一下数学的现在和未来,是很有好处的. 现代数学...

世界数学史分为哪四个时期
答:四、近现代数学时期(19世纪20年代);现代数学。现代数学时期,大致从19世纪初开始。数学发展的现代阶段的开端,以其所有的基础。代数、几何、分析中的深刻变化为特征。近代数学是研究数量、结构、变化、空间以及信息等概念的一门学科。17世纪,数学的发展突飞猛进,实现了从常量数学到变量数学的转折。中国...

数学的历史进程
答:10二十世纪的纯粹数学的趋势11二十一世纪应用数学的天下中国 数学的历史进程中国古代是一个在世界上数学领先的国家,用近代科目来分类的话,可以看出无论在算术、数、几何和三角各方而都十分发达。现在就让我们来简单回顾一下初等数学在中国发展的历史。 (一)属于算术方面的材料 大约在3000年以前中国已经知道自然数的...

数学的发展历史
答:微分学包括求导数的运算,是一套关于变化率的理论。它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。第四时期 现代数学。现代数学时期,大致从19世纪初开始。数学发展的现代阶段的开端,以其所有的基础---...

数学发展历史是什么?
答:微分学包括求导数的运算,是一套关于变化率的理论,它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论,积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。第四时期 现代数学,现代数学时期,大致从19世纪初开始,数学发展的现代阶段的开端,以其所有的基础代数...