物理小故事

作者&投稿:乾聂 (若有异议请与网页底部的电邮联系)
关于物理的小故事,100、200字左右,简洁明了~

第一个 国外著名故事
传说在1590年,年仅26岁的伽利略在比萨斜塔上进行了落体实验。他特意邀请了一些大学教授来观看,许多人也闻讯前来围观。 
  只见伽利略身带两个铁球,一个重45.4公斤(100磅),一个重0.454公斤(1磅),像出征的战士一样,威武地登上塔顶。当他向人们宣布,这一大一小的两个铁球同时下落,将会同时着地的时候,塔下面的人像开了锅似的议论开了:“难道亚里士多德真错了?这是绝对不可能的!”“这家伙准是疯了!”……
  伽利略听到这些议论和讥笑,坦然自若,他胸有成竹地大声说:“先生们,别忙着下结论,还是让事实出来说话吧!”说完,他伸开双手,使两个铁球同时从塔上落下来,只见它们平行下落,越落越快,最后“啪”的一声,同时落地。面对无可辩驳的实验事实,那些亚里士多德的忠实信徒,一个个瞠目结舌,不知所措,只好灰溜溜地走开了。比萨斜塔实验不但推翻了古代权威的错误学说,结束了它对学术界近两千年的统治,而且开创了近代科学实验的新纪元。
第二则 国内小故事

吴有训先生于1916年考入南京高等师范学校理化部,受教于留美归来的胡刚复博士。在胡先生的指导下,吴有训在国内即对X射线有了一定的了解。1921年以优异成绩获得赴美留学机会。该年底吴有训赴美,1922年初进入芝加哥大学。其时,著名物理学家A•H•康普顿正以访问学者身份在芝加哥大学从事研究与教学,1923年他正式成为该校教授,该年5月康普顿发表了解释X射线被石墨散射后频率改变现象(后称康普顿效应)的论文。当时也研究这一现象的美国物理界一位重要人物杜安已有所谓“箱子效应”和“三次辐射”的理论,因此他极力反对康普顿的工作。吴有训先后以十几种元素为散射物质进一步做了大量深入研究,通过精心设计实验方案以无法辩驳的事实对康普顿的理论给予了极大支持。这些成果得到了国际物理界的关注和承认。相关数据被一些国际著作引用。吴先生1926年获博士学位。国外有的物理教科书,因尊重吴先生的工作而将康普顿效应称为康普顿—吴有训效应。

还有几个 有名物理学家的 小故事~~
钱学森
一次导弹发射的试验马上就要开始了,可是当时的天气很坏,到底能发不能发,试验基地的司令员、参谋长和钱学森的意见不同。按照当时的规定,每次发射报告上面必须有三个人同意的签字,然后再请示聂荣臻元帅的批准。可是当时司令员和参谋长都说不能发,而钱学森却非常有信心的说能发射,这样就形成了2:1的局面,于是就把只有钱学森一个人签字的报告送给了聂帅。没想到,聂帅很爽快地批准发射,并说要是只有那两位签字而没有钱院长的签字,我倒不敢批了。你猜这发导弹发射成功没?结果是这一发导弹还真的打成功了。

泡利
一次,在后来发现反质子的意大利物理学家塞格雷做完一个报告和泡利等离开会议室时,泡利对他说:“我从来没有听过象你这么糟糕的报告。”当时塞格雷一言未发。泡利想了一想,又回过头对与他们同行的瑞士物理化学家布瑞斯彻说:“如果是你做报告的话,情况会更加糟糕。当然,你上次在苏黎士的开幕式报告除外。”

费雪
在德国,很多人都喜欢听音乐会或看歌剧,费雪也是一位爱好者。工作之余,只要音乐厅、歌剧院有演出,他是必到的观众。一天,正好城里有歌剧演出,实验结束后费雪把实验室收拾好,就动身前往歌剧院。他一进歌剧院就发现一些人离他远远地,他没有介意,开始找自己的座位;找到座位,刚一落座,周围的观众就表现出异样:开始时是相互交头接耳,继而好象有人发出了什么命令似的,大家都不约而同地掏出手绢捂住鼻子,像躲避瘟疫一样扭转身子,还有人想逃离座位。终于有人受不了,大声叫道:“哪里来的臭气,谁把这个刚从马棚出来的马夫放进剧场来了!”这时费雪才如梦初醒,原来是自己给观众带来了极大的不便,他忙站起身来,赶快离开了剧场。回到家里,费雪认真洗过澡,又从里到外换了衣服,但是臭味依然存在,就好象是从皮肤里散发出来的一样。费雪有点懊丧,看来歌剧看不成了。但是为了科学研究,这点牺牲算不了什么。

居里夫人
就在居里夫妇声名日盛,进一步对镭进行研究时,居里先生却不幸在一场意外的车祸中去世了。居里夫人忍着巨大的悲痛,谢绝了巴黎官方要为居里先生举行游行和演说,只请求用最简单的仪式把居里先生葬在故乡他母亲的墓地里。

居里夫人一边教书,一边继续对镭进行深入研究。她还组织了镭研究小组,把镭这一神秘元素介绍给世界各国。1911年12月,瑞典科学博士学院宣布授予她本年度诺贝尔化学奖金。在诺奖的历史上,两次获取此奖的,只有居里夫人。按照惯例,居里夫人要到斯德哥尔摩作一次公开的演讲。伴随她前往的有她的姐姐和她的长女绮瑞娜。

诺贝尔
诺贝尔是一位名副其实的亿万富翁,他的财产累计达30亿瑞典币。但是他与许多富豪截然不同。他一贯轻视金钱和财产,当他母亲去世时,他将母亲留给他的遗产全部捐献给了慈善机构,只是留下了母亲的照片,以作为永久的纪念。他说:“金钱这东西,只要能够解决个人的生活就够用了,若是多了,它会成为遏制人才的祸害。有儿女的人,父母只要留给他们教育费用就行了,如果给予除教育费用以外的多余的财产,那就是错误的,那就是鼓励懒惰,那会使下一代不能发展个人的独立生活能力和聪明才干。”

阿基米德(Archimedes,约公元前287~212)是古希腊物理学家、数学家,静力学和流体静力学的奠基人。

除了伟大的牛顿和伟大的爱因斯坦,再没有一个人象阿基米德那样为人类的进步做出过这样大的贡献。即使牛顿和爱因斯坦也都曾从他身上汲取过智慧和灵感。他是“理论天才与实验天才合于一人的理想化身”,文艺复兴时期的达芬奇和伽利略等人都拿他来做自己的楷模。


从洗澡的故事说起

关于阿基米德,流传着这样一段有趣的故事。相传叙拉古赫农王让工匠替他做了一顶纯金的王冠,做好后,国王疑心工匠在金冠中掺了假,但这顶金冠确与当初交给金匠的纯金一样重,到底工匠有没有捣鬼呢?既想检验真假,又不能破坏王冠,这个问题不仅难倒了国王,也使诸大臣们面面相觑。

后来,国王请阿基米德来检验。最初,阿基米德也是冥思苦想而不得要领。一天,他去澡堂洗澡,当他坐进澡盆里时,看到水往外溢,同时感到身体被轻轻拖起。他突然悟到可以用测定固体在水中排水量的办法,来确定金冠的比重。他兴奋地跳出澡盆,连衣服都顾不得跑了出去,大声喊着“尤里卡!尤里卡!”。(Fureka,意思是“我知道了”)。

他经过了进一步的实验以后来到王宫,他把王冠和同等重量的纯金放在盛满水的两个盆里,比较两盆溢出来的水,发现放王冠的盆里溢出来的水比另一盆多。这就说明王冠的体积比相同重量的纯金的体积大,所以证明了王冠里掺进了其他金属。

这次试验的意义远远大过查出金匠欺骗国王,阿基米德从中发现了浮力定律:物体在液体中所获得的浮力,等于他所排出液体的重量。一直到现代,人们还在利用这个原理计算物体比重和测定船舶载重量等。

“假如给我一个支点,我就能推动地球”

阿基米德不仅是个理论家,也是个实践家,他一生热衷于将其科学发现应用于实践,从而把二者结合起来。在埃及,公元前一千五百年前左右,就有人用杠杆来抬起重物,不过人们不知道它的道理。阿基米德潜心研究了这个现象并发现了杠杆原理。阿基米德曾说过:“假如给我一个支点,我就能推动地球。”

当时的赫农王为埃及国王制造了一条船,体积大,相当重,因为不能挪动,搁浅在海岸上很多天。阿基米德设计了一套复杂的杠杆滑轮系统安装在船上,将绳索的一端交到赫农王手上。赫农王轻轻拉动绳索,奇迹出现了,大船缓缓地挪动起来,最终下到海里。国王惊讶之余,十分佩服阿基米德,并派人贴出告示“今后,无论阿基米德说什么,都要相信他。”



.牛顿

他年幼时,曾一面牵牛上山,一面看书,到家后才发觉手里只有一根绳;看书时定时煮鸡蛋结果将表和鸡蛋一齐煮在锅里;有一次,他请朋友到家中吃饭,自己却在实验室废寝忘食地工作,再三催促仍不出来,当朋友把一只鸡吃完,留下一堆骨头在盘中走了以后,牛顿才想起这事,可他看到盘中的骨头后又恍然大悟地说:“我还以为没有吃饭,原来我早已吃过了”。

牛顿不仅对于力学,在其它方面也有很大贡献。在数学方面,他发现了二项式定理,创立了微积分学;在光学方面,进行了太阳光的色散实验,证明了白光是由单色光复合而成的研究了颜色的理论,还发明了反射望远镜。

2.阿尔伯特.爱因斯坦
因斯坦小时候,老师让同学们做工艺品,大家做的都很好,只有爱因斯坦拿出的是个很丑陋的小板凳。老师和同学们嘲笑他,说世界上还有比这更丑陋的板凳吗?爱因斯坦说有,他真拿出两个更丑陋的。他说虽然前一个板凳很丑陋,但是比后来两个要好的多。

爱因斯坦除在光电效应、相对论等方面作出举世皆知的杰出贡献外,他关于布朗运动的研究成果,由于对大量无序因子的规律性把握,成为当今最热门的金融数学的基础;他提出的激光受激辐射的概念,在几十年后的今天得到了广泛的应用;他与玻尔进行的论战中提出的EPR佯谬,至今仍是理论物理学和科学哲学界不断探讨的话题……

3. 阿基米德
关于阿基米德,流传着这样一段有趣的故事。相传叙拉古赫农王让工匠替他做了一顶纯金的王冠,做好后,国王疑心工匠在金冠中掺了假,但这顶金冠确与当初交给金匠的纯金一样重,到底工匠有没有捣鬼呢?既想检验真假,又不能破坏王冠,这个问题不仅难倒了国王,也使诸大臣们面面相觑。

后来,国王请阿基米德来检验。最初,阿基米德也是冥思苦想而不得要领。一天,他去澡堂洗澡,当他坐进澡盆里时,看到水往外溢,同时感到身体被轻轻拖起。他突然悟到可以用测定固体在水中排水量的办法,来确定金冠的比重。他兴奋地跳出澡盆,连衣服都顾不得跑了出去,大声喊着“尤里卡!尤里卡!”。(Fureka,意思是“我知道了”)。

他经过了进一步的实验以后来到王宫,他把王冠和同等重量的纯金放在盛满水的两个盆里,比较两盆溢出来的水,发现放王冠的盆里溢出来的水比另一盆多。这就说明王冠的体积比相同重量的纯金的体积大,所以证明了王冠里掺进了其他金属。

他是物理学家、数学家,静力学和流体静力学的奠基人。

4.钱学森

在钱学森提出回过后,美国人大为生气,并对他严加看守,甚至施加刑罚.
美国人曾经给钱学森一个莫须有的罪名,使他一人前往荒无人烟的小岛,用各种各样的刑罚折磨他,据说半年就少了50斤.可是钱学森回国的决心从未动摇,美国人放出话,只要钱学森愿意留在美国,不回中国,就马上给予他最优良的设施,比原来更好,更美的生活,给他更大的荣誉.钱学森没有放弃.依然意决回国.

钱学森(1911.12.11--)应用力学、航天技术和系统工程科学家。生于上海市,原籍浙江省杭州市。1934年毕业于上海交通大学。1936年在美国麻省理工学院获硕士学位。1938年获加州理工大学博士学位。1955年回国。曾任中国力学学会、中国自动化学会、中国系统工程学会、中国宇航学会理事长、名誉理事长等职。现任国防科学技术工业委员会研究员。早年在应用力学和火箭、导弹技术的许多领域都做过开创性的工作。独立研究以及和冯.卡门合作研究提出的许多理论,为应用力学、航空工程和火箭导弹技术的发展奠定了基础。回国后长期担任火箭、导弹和卫星研制的技术领导职务,为创建和发展我国的导弹、航天事业作出了杰出贡献。在工程控制论、系统工程和系统科学、思维科学和人体科学以及马克思主义哲学等许多理论领域都进行过创造性研究,作出了重大贡献。1956年获中国科学院自然科学奖一等奖,1985年获国家科技进步奖特等奖,1991年被国务院、中央军委授予“国家杰出贡献科学家”荣誉称号和一级英模奖章。中国科学院院士。1994年当选为中国工程院院士。

5.麦克斯韦
麦克斯韦从小就有很强的求知欲和想象力,爱思考,好提问。据说还在他两岁多的时
候,有一次爸爸领他上街,看见一辆马车停在路旁,他就问:“爸爸,那马车为什么不走
呢?”父亲说:“它在休息。”麦克斯韦又问:“它为什么要休息呢?”父亲随口说了一
句:“大概是累了吧?”“不,”麦克斯韦认真地说,“它是肚子疼!”还有一次,姨妈
给麦克斯韦带来一篮苹果,他一个劲地问:“这苹果为什么是红的?”姨不知道怎么回答
,就叫他去玩吹肥皂泡。谁知他吹肥皂泡的时候,看到肥皂泡上五彩缤纷的颜色,提的问
题反而更多了。上中学的时候,他还提过象“死甲虫为什么不导电”,“活猫和活狗摩擦
会生电吗”等问题。父亲很早就教麦克斯韦学几何和代数。上中学以后,课本上的数学知
识麦克斯韦差不多都会了,因此父亲经常给他开“小灶”,让他带一些难题到学校里去做
。每当同学们欢蹦乱跳地玩的时候,麦克斯韦却进入了数学的乐园,他常常一个人躲在教
室的角落里,或者独自坐在树荫下,入迷地思考和演算着数学难题。

麦克斯韦主要从事电磁理论、分子物理学、统计物理学、光学、力学、弹性理论方面的研究。尤其是他建立的电磁场理论,将电学、磁学、光学统一起来,是19世纪物理学发展的最光辉的成果,是科学史上最伟大的综合之一

6.法拉第
法拉第1791年9月22日生于萨里郡纽因顿的一个铁匠家庭。13岁就在一家书店当送报和装订书籍的学徒。他有强烈的求知欲,挤出一切休息时间贪婪地力图把他装订的一切书籍内容都从头读一遍。读后还临摹插图,工工整整地作读书笔记;用一些简单器皿照着书上进行实验,仔细观察和分析实验结果,把自己的阁楼变成了小实验室。在这家书店呆了八年,他废寝忘食、如饥似渴地学习。他后来回忆这段生活时说:“我就是在工作之余,从这些书里开始找到我的哲学。这些书中有两种对我特别有帮助,一是《大英百科全书》,我从它第一次得到电的概念;另一是马塞夫人的《化学对话》,它给了我这门课的科学基础。”

法拉第主要从事电学、磁学、磁光学、电化学方面的研究,并在这些领域取得了一系列重大发现。1820年奥斯特发现电流的磁效应之后,法拉第于1821年提出“由磁产生电”的大胆设想,并开始了艰苦的探索。1821年9月他发现通电的导线能绕磁铁旋转以及磁体绕载流导体的运动,第一次实现了电磁运动向机械运动的转换,从而建立了电动机的实验室模型。接着经过无数次实验的失败,终于在1831年发现了电磁感应定律。这一划时代的伟大发现,使人类掌握了电磁运动相互转变以及机械能和电能相互转变的方法,成为现代发电机、电动机、变压器技术的基础。

7. 伽利略

有一次,他站在比萨的天主教堂里,眼睛盯着天花板,一动也不动。他在干什么呢?原来,他用右手按左手的脉搏,看着天花板上来回摇摆的灯。他发现,这灯的摆动虽然是越来越弱,以至每一次摆动的距离渐渐缩短,但是,每一次摇摆需要的时间却是一样的。于是,伽利略做了一个适当长度的摆锤,测量了脉搏的速度和均匀度。从这里,他找到了摆的规律。钟就是根据他发现的这个规律制造出来的

、主要贡献
1、对力学的贡献
1.1科学描述了运动
经院哲学家主要关注的是“终极原因”,所以主要借助于质料、形式、目的、自然位置等模糊概念对运动作因果的和定性的描述,而且把运动分为自然运动和强迫运动,伽利略认为这种描述和分类方法,实际上是把运动的研究引入绝境. 他不相信自然运动和强迫运动的区别,他认为应该依据运动的基本特征量———速度对运动进行分类,由此提出了匀速运动和变速运动的分类方法.
伽利略对运动基本概念,包括重心、速度、加速度 等都作了详尽研究并给出了严格的数学表达式。尤其是 加速度概念的提出,在力学史上是一个里程碑。有了加 速度的概念,力学中的动力学部分才能建立在科学基础 之上,而在伽利略之前,只有静力学部分有定量的描述。 伽利略曾非正式地提出过惯性定律(见牛顿运动定 律)和外力作用下物体的运动规律,这为牛顿正式提出 运动第一、第二定律奠定了基础。在经典力学的创立上, 伽利略可说是牛顿的先驱。
1.2 建立落体定律
通过伽利略得出结论,这个规律在自由下落的极限情况下也一定成立. 上面得到的结果可以用另一数学形式来表达,即在一定的时间内圆球所走过的总距离与这段时间的平方成正比,或用伽利略自
1.3 确定惯性定律
惯性定律:匀速运动和静止因为不是强加的,所以永恒. 正是这种永恒运动维持着地球以及整个宇宙的井然秩序.伽利略还明确指出,物体的速度无须外力维持,但外力可以改变物体运动的速度,即产生加速度,这使得人们得以从亚里士多德的谬论“力是维持物体运动的原因”中解脱出来,从而把动力学的研究引上了正确的方向.
1.4研究抛体运动
在对抛物体的研究中,伽利略用几何方法证明了一个平抛物体可以分解为水平方向和垂直下落两种运动。他证明了在抛物体初速度相同的条件下,抛射角为45度时,射程最远。
1.5提出相对性原理
伽利略在《对话》中进而写道:“运动作为运动而言,并作为运动在起作用,只是对没有这种运动的物体才存在,在所有具有相等运动的物体中间,运动是不起作用的,而且看上去就仿佛不存在似的.”伽利略是在论证地球上的人不能觉察地球的运动时讲这段话的,所以讲的“运动”自然是匀速运动,而匀速运动的体系就是惯性定律能够成立的体系,所以也就是惯性体系,伽利略的这段话精辟地阐述了相对性原理:在惯性系中所做的一切力学实验都不能证明体系本身的运动.
1.6首创科学的研究方法
伽利略关于运动理论的研究工作,采用了一个对近代科学的发展很有效的程序,即对现象的一般观察→提出工作假设→运用数学和逻辑的手段得出特殊推论 →通过物理实验对推论进行检验→对假设进行修正和推广,等等.
2、对天文学的贡献
伽利略在传播和捍卫哥白尼天文学中的决定性作用。
1543年,波兰天文学家哥白尼出版了他不朽的著作《天体运动论》,建立了太阳中心学说,这一学说的建立是科学史具有划时代意义的事件,标志着近代科学的开端。但这一学说在当时并未引起广泛的注意。经过布鲁诺特别是伽利略的传播后,情况有了很大的不同。1609年,伽利略用他自己制造的、放大率的呵0倍的天文望远镜观察天天,看到了太阳上有黑子、月球表面有高低不平的现象,木星有四颗卫星,金星有盈亏等等。这些成果直接和间接地证明了哥白尼学说的正确性。
3、科学实验方法的贡献
所谓科学实验,就是人们根据研究的目的,利用科学仪器设备人为地控制、模拟、创造或纯化某种自然现象 过程,排除干扰、突出主要因素,在有利的条件下去研究自然规律的一种科学活动.在伽利略的科学生涯中,不仅强调观察和实验的重要性,而且同时强调理性与经验的同等重要,是在经验的基础上,通过理性的数学建构来达到对客观自然界的认识.伽利略通过其毕生的努力,创立了科学实验方法.
由于伽利略卓有成效的工作和精辟的科学思想,把科学实验方法发展到了一个完
全新的高度,使物理学走上了真正科学的道路,也为近代自然科学系统地、全面地发展,开辟了广阔的前景.伽利略把理论和实验紧密而和谐地结合在一起,构成了一套完整的科学研究方法,有力地推动了近代科学的发展.正是这种新方法———逻辑推理与科学实验相结合———使物理学摆脱了依靠形而上的思辨、自觉、猜测和定性的议论的状况,走上了坚实的科学的道路,尽管伽利略没有把实验作为理论的唯一支点,但实验还是改变了科学的性质和方向.正是在这个意义上,伽利略被称为科学实验方法的创始人和近代科学的奠基人.爱因斯坦和英费尔德在
《物理学的进化》一书中曾作了这样的评论:“伽利略的发现以及他所应用的数学的推理方法是人类思想史上最伟大成就之一,而且标志着物理学的真正开端.”这个评价,至今对于我们仍有深刻的教益.
4、对哲学的贡献
他一生坚持与唯心论和教会的经院哲学作 斗争,主张用具体的实验来认识自然规律,认为经验是理 论知识的源泉。他不承认世界上有绝对真理和掌握真理 的绝对权威,反对盲目迷信。他承认物质的客观性、多 样性和宇宙的无限性,这些观点对发展唯物主义的哲学 具有重要的意义。但由于历史的局限性,他强调只有可 归纳为数量特征的物质属性才是客观存在的.

8.焦耳

英国著名科学家焦耳从小就很喜爱物理学,他常常自己动手做一些关于电、热之类的实验。
有一年放假,焦耳和哥哥一起到郊外旅游。聪明好学的焦耳就是在玩耍的时候,也没有忘记做他的物理实验。
他找了一匹瘸腿的马,由他哥哥牵着,自己悄悄躲在后面,用伏达电池将电流通到马身上,想试 一试动物在受到电流刺激后的反应。结果,他想看到的反应出现了,马收到电击后狂跳起来,差一点把哥哥踢伤。
尽管已经出现了危险,但这丝毫没有影响到爱做实验的小焦耳的情绪。他和咯咯又划着船来到群山环绕的湖上,焦耳想在这里试一试回声有多大。他们在火枪里塞满了火药,然后扣动扳机。谁知“砰”的一声,从枪口里喷出一条长长的火苗,烧光了焦耳的眉毛,还险些把哥哥吓得掉进湖里。
这时,天空浓云密布,电闪雷鸣,刚想上岸躲雨的焦耳发现,每次闪电过后好一会儿才能听见轰隆的雷声,这是怎么回事?
焦耳顾不得躲雨,拉着哥哥爬上一个山头,用怀表认真记录下去每次闪电到雷鸣之间相隔的时间。
开学后焦耳几乎是迫不及待地把自己做的实验都告诉了老师,并向老师请教。
老师望着勤学好问的焦耳笑了,耐心地为他讲解:“光和声的传播速度是不一样的,光速快而声速慢,所以人们总是想见闪电再听到雷声,而实际上闪电雷鸣是同时发生的。”
焦耳听了恍然大悟。从此,他对学习科学知识更加入迷。通过不断地学习和认真地观察计算,他终于发现了热功当量和能量守恒定律,成为一名出色的科学家

焦耳一生都在从事实验研究工作,在电磁学、热学、气体分子动理论等方面均作出了卓越的贡献。他是靠自学成为物理学家的。

一、望远镜的发明

1608年6月的一天,伽利略听说,一个荷兰人把一片凸镜和一片凹镜放在一起,做了一个玩具,可把看见的东西放大。这一夜,伽利略坐在桌子前,蜡烛点了一支又一支,他反复思考着,琢磨着,为什么两个这样的镜片放在一起,就能起放大作用呢?天亮了,伽利略决定自己动手做一个。

他找来一段空管子,一头嵌了一片凸面镜,另一头嵌了一片凹面镜,一个小望远镜做成了。拿起来一看,可以把原来的物体放大三倍。伽利略没有满足,他进一步改进,又做了一个。

他带着这个望远镜跑到海边,只见茫茫大海波涛翻滚,没有一条船。当他拿起了望远镜再看时,一条船正从远处向岸边驶来。实践证明,它可以放大八倍。

伽利略不断地改进着,不断地制造着,最后,他的望远镜可以将原物放大三十二倍。

一天晚上,皎洁的月光洒满大地,伽利略拿起自己的望远镜对准了月亮。咦,月亮并不是象几千年来人们所说的那样光滑无瑕,那上面象地球一样,有高山、深谷,还有火山的裂痕呢!

二、自由落体运动

落体问题,人们很早就注意到了。在伽利略之前,古希腊的亚里士多德的学说认为,物体下落的快慢是不一样的。它的下落速度和它的重量成正比,物体越重,下落的速度越快。比如说,十公斤重的物体,下落的速度要比一公斤重的物体快十倍。

一千七百多年来,在书本里,在学校的讲台上,一直把这个违背自然规律的学说当作圣经来讲述,没有任何人敢去怀疑它。这是因为,亚里士多德提出过 “地球中心说”,它符合奴隶主阶级和封建统治阶级的利益,因此,亚里士多德的其它学说也就得到了保护。

伽利略选择了比萨斜塔作试验场。有一天,他带了两个大小一样,但重量不等,一个重一百磅的实心铁球,一个重一磅的空心铁球,登上了五十多米高的斜塔。塔下,站满了前来观看的人。大家议论纷纷,有人讥笑他:“这个青年一定是疯了,让他胡闹去罢!亚里士多德的理论还会错吗!”

只见伽利略出现在塔顶,两手各拿一个铁球,大声喊道:“下面的人看清楚啦,铁球落下去了。”他把两手同时张开。人们看到,两个铁球平行下落,几乎同时落到了地面上。那些讽刺讥笑他的人目瞪口呆。

三、万有引力定律

牛顿一人在家中的果园中,由于边走路边思考问题,无意间撞到园中的苹果树,这时一个苹果正好砸在牛顿的头上。牛顿突然从问题中醒悟过来,捡起了苹果,这时他又陷入一个问题:为什么苹果会落到地上,而不是飘上天空。最终牛顿提出一个最简单的现象产生的举世定律:万有引力。

一天,保姆要出去,临走前叮嘱牛顿:“我有事,先出去下,肚子饿了去煮鸡蛋吃,我烧好水了。”保姆回来发现牛顿把一块怀表拿去煮了。而牛顿却在研究发明。这个故事告诉我们不要太投入一件事,该收手时就收手。

四、瓦特的故事

18世纪中叶,英国格拉斯葛大学,有位名叫里德斯德的教授,一天晚上,他把瓦特约到自己的办公室,对瓦特说:“我知道你是个很聪明的机器修理工,我想请你帮我一个忙。”

瓦特说:“我能帮你什么忙呢?”

里德斯德教授说:“我的一套机器图纸被人偷去了。但是要按照图纸把这台机器造出来是非常困难的,偷图纸的人一定会来找你帮忙加工的。如果那人来找你,请你务必告诉我。”

就在这时,教授的一个青年助手,拎着一把水壶进来,给他俩每人沏了一杯咖啡。那位助手把水壶放在火炉上,关上门就出去了。教授起身走到门边,把门反锁了起来。

教授和瓦特边喝咖啡边谈着教授的图纸。渐渐地,瓦特觉得头昏脑胀,他估计是咖啡有问题,只觉得浑身无力,一会儿就昏昏沉沉地睡着了。

当瓦特醒来时,已经是第二天了。他睁眼一看,里斯德教授已经死了,在教授的颈上有一枚五厘米长带有软木塞的针。瓦特支撑着爬起来去开门,却发现门是反锁着的,钥匙在教授的身上。瓦特回忆起昨晚的事,怀疑是那个助手干的。

但那个助手出去了就再没有进来,教授颈上的针又是谁扎的呢?他盯着教授颈上的毒针和那软木塞仔细看了好一会,终于弄明白了:水蒸气在膨胀时,它的压力比水要大近千倍。

那个助手把水壶放在火炉上时,就把插有毒针的软木塞堵在壶嘴上了,并且将壶嘴对准了教授的颈部。水烧开的时候,因壶嘴被软木塞子堵着,蒸汽的压力就不断增加,最后蒸汽的压力达到一定程度,软木塞带着毒针喷射出去,射向了教授。

警察来了以后,瓦特谈了自己的想法。经过警察的侦破,凶手就是教授的助手。 后来,瓦特从水蒸气得到启发发明了蒸汽机。

五、法拉第的故事

法拉第1791年9月22日生于萨里郡纽因顿的一个铁匠家庭。13岁就在一家书店当送报和装订书籍的学徒。他有强烈的求知欲,挤出一切休息时刻贪婪地力图把他装订的一切书籍资料都从头读一遍。

读后还临摹插图,工工整整地作读书笔记;用一些简单器皿照着书上进行实验,仔细观察和分析实验结果,把自己的阁楼变成了小实验室。在这家书店呆了八年,他废寝忘食、如饥似渴地学习。他之后回忆这段生活时说:“我就是在工作之余,从这些书里开始找到我的哲学。

这些书中有两种对我个性有帮忙,一是《大英百科全书》,我从它第一次得到电的概念;另一是马塞夫人的《化学对话》,它给了我这门课的科学基础。”

法拉第主要从事电学、磁学、磁光学、电化学方面的研究,并在这些领域取得了一系列重大发现。1820年奥斯特发现电流的磁效应之后,法拉第于1821年提出“由磁产生电”的大胆设想,并开始了艰苦的探索。

1821年9月他发现通电的导线能绕磁铁旋转以及磁体绕载流导体的户外,第一次实现了电磁户外向机械户外的转换,从而建立了电动机的实验室模型。

之后经过无数次实验的失败,最后在1831年发现了电磁感应定律。这一划时代的伟大发现,使人类掌握了电磁户外相互转变以及机械能和电能相互转变的方法,成为现代发电机、电动机、变压器技术的基础。



趣味物理]“其实你也可以做伽利略”
有许多城市为爱好强烈刺激的人预备了一种极别致的娱乐,叫做“魔术秋千”。我没有玩过这种秋千,所以只能从一本科学游戏集里抄下来一段描写它的文字:
在离地面很高的地方,有一根很坚固的横贯屋子的梁,梁上挂着秋千。大家在上面坐定以后,工作人员就关上门,撤去进屋子的跳板。这时候他宣布,他马上要让玩秋千的游客有机会去做一次短期的空中旅行了。说完以后,他就轻轻地推动秋千。然后自己就坐在后面,像驾马车的人坐在马车后面一样,或者干脆走出这间屋子。
这时候,秋千摆动的幅度越来越大,看来就要荡得同横梁一样高了。秋千越荡越高,最后,它绕着横梁转了一周。运动越来越快了,这些荡秋千的人虽然大部分都已经知道这个游戏实际上是怎么一回事,也感觉到自己的确是在摆动,的确在做着迅速的运动。他们似乎觉得自己的头有时候是倒挂着,所以就本能地抓着坐位的扶手,免得跌下来。
不久,秋千摆动的幅度开始减小了,已经不再同横梁一样高了。又过了几秒钟,它完全停了下来。
事实上,这秋千始终挂在那里,没有动过,而是这间屋子在一种非常简单的机件帮助下,绕着水平轴在游客周围转动着。屋子里的各种家具,都是固定在地板上或墙壁上的。那个罩着大灯罩的电灯看来好像很容易跌倒,其实也是焊在桌子上的。管理秋千的工作人员好像曾经轻轻地推动过秋千,使它荡起来,而实际上是屋子轻轻地摆动了一下,他只是做一个推的样子。
所有一切都促成大家的错觉。
这个错觉的秘密,简直简单得可笑。然而在你现在懂得了这是怎么一回事以后,再去玩这个魔术秋千,你还是会受它欺骗的。错觉的力量竟有这样大!
普希金的一首关于“运动”的诗,你还记得吗?
“世界上没有运动。”一个满腮胡须的哲人说。
另一个哲人不开口,却在他面前来回地走。
他这个反驳真是再有力也没有。
人们都赞美这个奥妙的答复。
可是,先生们,这个有趣的事件,
使我想起了另外一个例子:
谁都看见太阳每天在我们头上走,
然而正确的却是固执的伽利略。
在那些不懂秋千秘密的游客当中,你也可能做一个伽利略。你同伽利略有一点不同:伽利略曾经向大家证明太阳和星是不动的,我们自己才在旋转。而你却要向大家证明:我们是不动的,整个屋子在围着我们转。但你跟伽利略一样,所说的话都和常见的情况相反,所以你也很可能遇上枷利略的可悲的遭遇:被大家看作是一个睁眼说瞎话的人……

一、望远镜的发明
1608年6月的一天,伽利略听说,一个荷兰人把一片凸镜和一片凹镜放在一起,做了一个玩具,可把看见的东西放大。这一夜,伽利略坐在桌子前,蜡烛点了一支又一支,他反复思考着,琢磨着,为什么两个这样的镜片放在一起,就能起放大作用呢?天亮了,伽利略决定自己动手做一个。
他找来一段空管子,一头嵌了一片凸面镜,另一头嵌了一片凹面镜,一个小望远镜做成了。拿起来一看,可以把原来的物体放大三倍。伽利略没有满足,他进一步改进,又做了一个。
他带着这个望远镜跑到海边,只见茫茫大海波涛翻滚,没有一条船。当他拿起了望远镜再看时,一条船正从远处向岸边驶来。实践证明,它可以放大八倍。
伽利略不断地改进着,不断地制造着,最后,他的望远镜可以将原物放大三十二倍。
一天晚上,皎洁的月光洒满大地,伽利略拿起自己的望远镜对准了月亮。咦,月亮并不是象几千年来人们所说的那样光滑无瑕,那上面象地球一样,有高山、深谷,还有火山的裂痕呢!
二、自由落体运动
落体问题,人们很早就注意到了。在伽利略之前,古希腊的亚里士多德的学说认为,物体下落的快慢是不一样的。它的下落速度和它的重量成正比,物体越重,下落的速度越快。比如说,十公斤重的物体,下落的速度要比一公斤重的物体快十倍。
一千七百多年来,在书本里,在学校的讲台上,一直把这个违背自然规律的学说当作圣经来讲述,没有任何人敢去怀疑它。这是因为,亚里士多德提出过 “地球中心说”,它符合奴隶主阶级和封建统治阶级的利益,因此,亚里士多德的其它学说也就得到了保护。
伽利略选择了比萨斜塔作试验场。有一天,他带了两个大小一样,但重量不等,一个重一百磅的实心铁球,一个重一磅的空心铁球,登上了五十多米高的斜塔。塔下,站满了前来观看的人。大家议论纷纷,有人讥笑他:“这个青年一定是疯了,让他胡闹去罢!亚里士多德的理论还会错吗!”
只见伽利略出现在塔顶,两手各拿一个铁球,大声喊道:“下面的人看清楚啦,铁球落下去了。”他把两手同时张开。人们看到,两个铁球平行下落,几乎同时落到了地面上。那些讽刺讥笑他的人目瞪口呆。

物理小故事

1746年4月春光明媚的一天、巴黎的市民穿红戴绿、扶老携幼,从四面八方向"巴黎圣母院"教堂前的广场赶去,去观看一场神奇的科学表演。
下午3时,教堂正门台阶上临时搭起的观礼台上,坐满了达官显贵和皇室人员,四周彩旗飘扬,鼓乐齐鸣。表演开始了,为首的神父--巴黎实验物理学校教师诺雷走向观礼台,鞠躬致礼后,让700名修道士手拉手地围成一个直径约270米的半圆圈,他走到圆圈的中心,将一只银光闪闪的玻璃瓶高高举起,大声说:"这瓶子就是这几个月来人们热衷于议论的莱顿瓶,现在我将使各位大人亲眼目睹它的神威。"接着,他令助手拿来摩擦起电机,手摇把柄,向莱顿瓶充电。然后,他让排头的修道士手捧玻璃瓶,再令排尾的修道上用手去握住莱顿瓶中央金属棒引出的导线,就在修道士握住这导线的瞬间,蓦然一声"噼啪"响,700多名修道上同时像触电一样,跳了起来,一个个吓得面如土色。这一触目惊心的场面,使所有的观众都惊得目瞪口呆:小小的玻璃瓶,哪来这么巨大的威力,真是不可思议!
"这威力并不是来自瓶子,而是这莱顿瓶里储藏的电。电将是未来世界的主宰。"诺雷教师讲起了莱顿瓶的发明故事来。

望远镜小史
17世纪初的一天,荷兰密特尔堡镇一家眼镜店的主人科比斯赫,他为检查磨制出来的透镜质量,把一块凸透镜和一块凹镜排成一条线,通过透镜看过去,发现远处的教堂的塔好象变大而且拉近了,于是在无意中发现了望远镜原理。1608年他为自己制作的望远镜申请专利,并遵从当局的要求,造了一个双筒望远镜。据说密特尔堡镇好几十个眼镜匠都声称发明了望远镜,不过一般都认为利比赫是望远镜的发明者。
望远镜发明的消息很快在欧洲各国流传开了,意大利科学家伽利略得知这个消息之后,就自制了一个。第一架望远镜只能把物体放大3倍。一个月之后,他制作的第二架望远镜可以放大8倍,第三架望远镜可以放大到20倍。1609年10月他作出了能放大30倍的望远镜。
伽里略用自制的望远镜观察夜空,第一次发现了月球表面高低不平,覆盖着山脉并有火山口的裂痕。此后又发现了木星的4个卫星、太阳的黑子运动,并作出了太阳在转动的结论。
几乎同时,德国的天文学家开普勒也开始研究望远镜,他在《屈光学》里提出了另一种天文望远镜,这种望远镜由两个凸透镜组成,与伽利略的望远镜不同,比伽利略望远镜视野宽阔。但开普勒没有制造他所介绍的望远镜。沙伊纳于1613年—1617年间首次制作出了这种望远镜,他还遵照开普勒的建议制造了有第三个凸透镜的望远镜,把二个凸透镜做的望远镜的倒像变成了正像。沙伊纳做了8台望远镜,一台一台地云观察太阳,无论哪一台都能看到相同形状的太阳黑子。因此,他打消了不少人认为黑子可能是透镜上的尘埃引起的错觉,证明了黑子确实是观察到的真实存在。在观察太阳时沙伊纳装上特殊遮光玻璃,伽利略则没有加此保护装置,结果伤了眼睛,最后几乎失明。
荷兰的惠更斯为了提高望远镜的精度在1665年做了一台筒长近6米的望远镜,来探查土星的光环,后来又做了一台将近41米长的望远镜。
使用物镜和目镜的望远镜称为折射望远镜,即使加长镜筒,精密加工透镜,也不能消除色象差,1668年英国科学家反射式望远镜,解决了色象差的问题。第一台反望远镜非常小,望远镜内的反射镜口径只有2.5厘米,但是已经能清楚地看到木星的卫星、金星的盈亏等。1672年牛顿做了一台更大的反射望远镜,送给了英国皇家学会,至今还保存在皇家学会的图书馆里。
牛顿曾认为折色象差不可救药,后来,证明过分悲观。1733年英国人哈尔制成一台消色差折射望远镜。1758年伦敦的宝兰德也制成同样的望远镜,他采用了折光原则不同的玻璃分别制造凸透镜和凹透镜,把各自形成的有色边缘相互抵消。
但是要制造很大透镜不容易,目前世界上最大的一台折射式望远镜直径为102厘米,安装在雅弟斯天文台。
反射式望远镜存在天文观测中发展很快,1793年英国赫瑟尔制做了反射式望远镜,反射镜直径为130米,用铜锡合金制成,重达1吨。1845年英国的洛斯制造的反射望远镜,反射镜直径为1.82米。1913年在威尔逊山天文台反望远镜,直径为254米。1950年在帕洛玛山上安装了一台直径5.08米反射镜的反射式望远镜。1969年在苏联高加索北部的帕斯土霍夫山上装设了直径为6米的反射镜,它是当时世界上最大的反射式望远镜,现在大型天文台大都使用反射式望远镜。

发电机史话
19世纪初期,科学家们研究的重要课题,是廉价地并能方便地获得电能的方法。
1820年,奥斯特成功地完成了通电导线能使磁针偏转的实验后,当时不少科学家又进行了进一步的研究:磁针的偏转是受到力的作用,这种机械力,来自于电荷流动的电力。那么,能否让机械力通过磁,转变成电力呢?著名科学家安培是这些研究者中的一个,他实验的方法很多,但犯了根本性错误,实验没有成功。
另一位科学家科拉顿,在1825年做了这样一个实验:把一块磁铁插入绕成圆筒状的线圈中,他想,这样或许能得到电流。为了防止磁铁对检测电流的电流表的影响,他用了很长的导线把电表接到隔壁的房间里。他没有助手,只好把磁铁插到线圈中以后,再跑到隔壁房间去看电流表指针是否偏转。现在看来,他的装置是完全正确的,实验的方法也是对头的,但是,他犯了一个实在令人遗憾的错误,这就是电表指针的偏转,只发生在磁铁插入线圈这一瞬间,一旦磁铁插进线圈后不动,电表指针又回到原来的位置。所以,等他插好磁铁再赶紧跑到隔壁房间里去看电表,无论怎样快也看不到电表指针的偏转现象。要是他有个助手,要是他把电表放在同一个房间里,他就是第一个实现变机械力为电力的人了。但是,他失去了这个好机会。
又过了整整6年,到了1831年8月29日,美国科学家法拉第获得了成功,使机械力转变为电力。他的实验装置与科拉顿的实验装置并没有什么两样,只不过是他把电流表放在自己身边,在磁铁插入线圈的一瞬间,指针明显地发生了偏转。他成功了。手使磁铁运动的机械力终于转变成了使电荷移动的电力。
法拉第迈出了最艰难的一步,他不断研究,两个月后,试制了能产生稳恒电流的第一台真正的发电机。标志着人类从蒸汽时代进入了电气时代。
一百多年来,相继出现了很多现代的发电形式,有风力发电、水力发电、火力发电、原子能发电、热发电、潮汐发电等等,发电机的构造日臻完善,效率也越来越高,但基本原理仍与法拉第的实验一样:少不了运动着的闭合导体,少不了磁铁。

核磁共振仪的发明
核磁共振仪广泛用于有机物质的研究,化学反应动力学,高分子化学以及医学,药学和生物学等领域。20年来,由于这一技术的飞速发展,它已经成为化学领域最重要的分析技术之一。
早在1924年,奥地利物理学家泡里就提出了某些核可能有自旋和磁矩。"自旋"一词起源于带电粒子,如质子、电子绕自身轴线旋转的经典图像。这种运动必然产生角动量和磁偶极矩,因为旋转的电荷相当于一个电流线圈,由经典电磁理论可知它们要产生磁场。当然这样的解释只是比较形象的比拟,实际情况要比这复杂得多。
原子核自旋的情况可用自旋量子数I表示。自旋量子获得,质量数的原子序数之间有以下关系:
质量数 原子序数 自旋量子数(I)
奇数 奇数或偶数 1/2, 3/2 , 5/2……
偶数 偶数 0
偶数 奇数 1,2,3……
1>0的原子核在自旋时会产生磁场;I为1/2的核,其电荷分布是球状;而I≥1的核,其电荷分布不是球状,因此有磁极矩。
I为0的原子核置于强大的磁场中,在强磁场的作用下,就会发生能级分裂,如果用一个与其能级相适应的频率的电磁辐射时,就会发生共振吸收,核磁共振的名称就是来源于此。
斯特恩和盖拉赫1924年在原子束实验中观察到了锂原子和银原子的磁偏转,并测量了未成对电子引起的原子磁矩。
1933年斯特恩等人测量了质子的磁矩。1939年比拉第一次进行了核磁共振的实验。1946年美国的普西尔和布少赫同时提出质子核磁共振的实验报告,他们首先用核磁共振的方法研究了固体物质、原子核的性质、原子核之间及核周围环境能量交换等问题。为此他们两位获得了1952年诺贝尔物理奖。50年代核磁共振方法开始应用于化学领域,1950年斯坦福大学的两位物理学家普罗克特和虞以NH 4NO3水溶液作为氮原子核源,在测定14N的磁矩时,发现两个性质截然不同的共振信号,从而发现了同一种原子核可随其化学环境的不同吸收能量的共振条件也不同,即核磁共振频率不同。这种现象称为"化学位移"。这是由于原子核外电子形成的磁场与外加磁场相互作用的结果。化学位移是鉴别官能团的重要依据。因为化学位移的大小与键的性质和键合的元素种类等有密切的关系。此外,各组原子核之间的磁相互作用构成自旋--自旋耦合。这种作用常常使得化学位移不同的各组原子核在共振吸收图上显示的不是单峰而是多重峰,这种情况是由分子中邻近原子核的数目,距离用对称性等因素决定,因此它有助于提示整个分子的。
由于上述成果高分辨核磁共振仪得以问世。开始测量的核主要是氢核,这是由于它的核磁共振信号较强。随着仪器性能的提高,13C,31P,15N等的核也能测量,仪器使用的磁场也越来越强。50年代制造出IT(特拉斯)磁场,60年代制造出2T的磁场,并利用起导现象制造出5T的起导磁体。70年代造出8T磁场。现在核磁共振仪已经被应用到从小分子到蛋白质和核酸的各种各样化学系统中。

发射光谱仪的发明
著名的英国科学家牛顿在1666年用三棱镜观察光谱,可以说是最早的光谱实验。此后不少科学家从事光谱学方面的研究。1800年,英国天文学家赫歇尔测量太阳光谱中各部分的热效应,在世界上首次发现了红外线。1801年里特发现了紫外线。1802年沃拉斯顿观察到太阳光谱的不连续性,发现中间有多条黑线,这本来是很重要的发现,他却误认为是颜色的分界线。1803年英国物理学家托马斯·杨进行了光的干涉的实验,第一次提供了测定波长的方法。
德国物理学家夫琅和费,重新发现和编绘了太阳光谱图,内有多条黑线(700多条),并对其中的重要黑线用从A到H等字母标记(人称"夫琅和费线"),这些黑线后来成为比较不同玻璃材料色散率的标准。这些成果在1814年至1815年间陆续发表。夫琅和费还发明了衍射光栅。开始他用银丝缠在两根螺杆上,做成光栅,后来建造了刻纹机,用金钢石在玻璃上刻痕,做成透射光栅。
光谱分析的应用研究是从基尔霍夫和本生开始的。本生是德国汉堡的化学教授。他发明了本生灯,对各种物质在高温火焰中发生的变化很有研究,基尔霍夫是汉堡的物理学教授,对光学熟悉。他们两位合作制成了第一台梭镜光谱仪(分光镜)。该仪器利用了牛顿1666年首创技术,使光通过三棱镜中,展开成为一道彩虹光带(光谱)。他们用透镜把物质在本生灯燃烧时发出的光线集成一束平行光,通过一条窄缝,再通过三棱镜,用望远镜放大观察所成的光谱。
基尔霍夫和本生发现,每种化学元素燃烧时发出的火焰都有独特的颜色,可以据此加以鉴别。1860年及1861年他们用光谱仪发现铯和铷。此后借助光谱分析方法研究目光,发现地球上许多元素太阳上也有。1868年法国天文学家詹森和英国天文学家罗克耶分别用光谱法发现了当时地球上还没有发现的一种元素,他们认为这是太阳大气中特有的元素,取名氦,即"太阳"的意思。这样光谱方法也应用到了天文学方面。
光谱方法研究工作急速的发展,也出现了新的问题,主要问题之一是缺乏足够精度的波长标准,致使观测结果混乱,无法相互交流。
1868年埃斯特朗发表"标准太阳光谱"图表,记有上千条夫琅和费线的小波长,以10-8厘米为单位,精确到6位数,为光谱工作者提供了极其有用的资料。为纪念他的,10-8厘米后来就埃斯特朗单位,简写作埃(A)。十几年后被更为精确的罗兰数据表所代替。
现代光谱仪不用三棱镜而用衍射光栅。这是一种上面刻有千条线的板,把光分开,然后把光谱拍摄或记录下来,再用电子仪器进行分析。
光谱仪广泛应用于冶金、地质、环境等各领域。

避雷针史话
一、避雷针首先是我国劳动人民制造和使用的避雷装置。有人说,捷克牧师普罗科普·迪维什于1754年安装了第一个避雷针。更多的人认为是美国的富兰克林于1753年制造了世界上第一个避雷针。实际上,我国在1688年以前就已经制造和首先使用了避雷针。
早在三国时期(公元220年到280年)和南北朝时期(公元420年到581年),我国古籍上就有“避雷室”的记载。据唐代王睿的《谷子》记载,我国汉代(公元前206年到公元220年)就有人提出,把瓦做成鱼尾形状,放在屋顶上就可以防止雷电引起的火灾。在我国的一些古建筑上,也发现设有避雷的装置,法国旅行家卡勃里欧别·戴马甘兰游历中国之后,于1688年写的《中国新事》一书中有这样一段记载:“当时中国新事屋宇的屋脊两头,都有一个仰起的龙头,龙口吐出曲折的金属舌头,伸向天空,舌根连着一根根细的铁丝,直通地下。这种奇妙的装置,在发生雷电的时刻就大显神通,若雷击中了屋宇,电流就会从龙口沿线下行泄至地下,起不了丝毫破坏作用。”由此可见,世界上第一个避雷针是由具有聪明才智的我国劳动人民制造的。
二、避雷针发展到今天,世界上发现了更安全的避雷针。更安全的避雷针已不是针状,而象鸡毛掸子。这种避雷针是由两位美国人发明的。据最近美国《纽约时报》报道,这种避雷针中心是一根管子,其顶端引出2000条细细的导线,这些导线呈辐射状分布。这种方式可以更好地驱散聚集在建筑物周围的静电荷。
三、“避雷针过时了”。目前,我国研制成功了半导体消雷器,它的防雷效果远远超过避雷针,也远远超过美国、法国、澳大利亚生产的同类产品。半导体消雷器具有两大功能:(1)当建筑物上空出现强雷云的时侯,它发出长达1米的电晕火花,中和天空电流,起到消减雷击的作用;(2)万一雷击下来,半导体消雷器上的有关装置,可以把雷击放出的强大电流阻挡住。
我国著名防雷专家武汉水利学院教授解广润建议在高大建筑物上安装这种半导体消雷器,以保护国家财产。解广润说,现在我国已有24个处于强雷区的单位装上了半导体消雷器,经过几年的试验,证明它确实一次又一次地使建筑物化危为安。他呼吁有关单位,特别是国防工程、气象、电力、通讯广播部门应尽快推广半导体消雷器,以减少雷击损失。

自行车是中国人发明的吗
关于自行车的发明说法较多。
①我国是世界上发明自行车最早的国家。自行车的始祖是我国公元前五百多年的独轮车。清康熙年间(1662~1722年),黄履庄曾发明过自行车。《清朝野史大观》卷十一载:“黄履庄所制双轮小车一辆,长三尺余,可坐一人,不须推挽,能自行。行时,以手挽轴旁曲拐,则复行如初,随住随挽日足行八十里。”这就是世界上最早的自行车。
②自行车为西欧人所发明。公元1790年,法国人西夫拉克研制成木制自行车,无车把、脚蹬、链条。车的外形像一匹木马的脚下钉着两个车轮,两个轮子固定在一条线上。由于这辆自行车没有驱动装置和转向装置,座垫低,西夫拉克自己骑在车上,两脚着地,向后用力蹬,使车子沿直线前进。1817年,德国的冯·德莱斯男爵发明了一种能自由活动的车把,使他的自行车转变比较方便。1818年,德莱斯在英国申请了专利。1839年,英国一位工人K·麦克米伦首创了用曲轴机构驱动后轮的脚踏自行车,可使人在骑自行车时双足离开地面。1861年的一天,巴黎的马车和婴儿车制造商米肖父子修理德莱斯式自行车,修好后在坡道上试车时,感到这种车放脚很困难,于是对它进行了改进,在车的前轮上安上脚蹬曲轴,从而发明了米肖型自行车,不久这种自行车便开始大量生产。大概在1870年前后,法国的马执又制造了一种前面驱动轮大,后面从动轮小的自行车,这种车的运行效果较好。1890年后,英国的亨伯公司生产出一种用链条传动的、车为菱型的自行车,这种形式的自行车一直沿用至今。
③自行车为俄国人发明。1801年9月的一天,俄国农奴阿尔塔莫诺夫骑着自己制造的木制自行车,行驶2500公里,赶到莫斯科向沙皇来历山大一世献礼。阿尔塔莫诺夫制造的自行车与法国人西夫拉克制造的车较相似。亚历山大一世见到阿尔塔莫诺夫制造的自行车,当即下令取消了他的奴隶身份。

我国古代的光学知识
光学的起源也和力学、热学一样,可以追溯到二、三千年前。我国的《墨经》就记载了许多光学现象,例如投影、小孔成像、平面镜、凸面镜、凹面镜等等。西方也很早就有光学知识的记载,欧几里得(Euclid,公元前约330-260)的《反射光学》(Catoptrica)研究了光的反射,阿拉伯学者阿勒·哈增(Al-Hazen ,965~1038)写过一部《光学全书》,讨论了许多光学现象。光学真正形成一门科学,应该从建立反射定律和折射定律的时代算起,这两个定律奠定了几何光学的基础。 光的本性也是光学研究的重要课题。微粒说把光看成是由微粒组成,认为这些微粒按力学规律沿直线飞行,因此光具有直线传播的性质。19世纪以前,微粒说比较盛行。但是,随着光学研究的深入,人们发现了许多不能用直进性解释的现象,例如干涉、衍射等,用光的波动性就很容易解释,于是光的波动说又占了上风。两种学说的争论构成了光学发展史中的一根红线。
1.取火的方法和对火的认识
我国古代取火的工具称为“燧”,有金燧、木燧之分。金燧取火于日,木燧取火于木。根据我国古籍的记载,古代常用“夫燧”、“阳燧”(实际上是一种凹面镜,因用金属制成,所以统称为“金燧”)来取火。古代人们在行军或打猎时,总是随身带有取火器,《礼记》中就有“左佩金燧”、“右佩木燧”的记载,表明晴天时用金燧取火,阴天时用木燧取火。阳燧取火是人类利用光学仪器会聚太阳能的一个先驱。讲到取火,古代还用自制的古透镜来取火的。公元前2世纪,就有人用冰作透镜,会聚太阳光取火。《问经堂丛书》、《淮南万毕术》中就有这样的记载:“削冰令圆,举以向日,以艾承其影,则火生。"我们常说,水火不兼容,但制成冰透镜来取火,真是一个奇妙的创造。用冰制成透镜是无法长期保存的,于是便出现用玻璃或玻璃来制造透镜。
2.针孔成像和影的认识
公元前4世纪,墨家就做过针孔成像的实验,并给予分析和解释。《墨经》中明确地写道:“景到(倒),在午有端,与景长,说在端。"这里的“午"即小孔所在处。这段文字表明小孔成的是倒像,其原因是在小孔处光线交叉的地方有一点(“端"),成像的大小,与这交点的位置无关。从这里也可以清楚看到,古人已经认识到光是直线行进的,所以常用“射"来描述光线径直向前。北宋的沉括在《梦溪笔谈》中也记述了光的直线传播和小孔成像的实验。他首先直接观察在空中飞动,地面上的影子也跟着移动,移动的方向与飞的方向一致。然后在纸窗上开一小孔,使窗外飞的影子呈现在窒内的纸屏上,沉括用光的直进的道理来解释所观察到的结果:“东则影西,西则影东"。墨家利用光的直线传播这一性质,讨论了光源、物体、投影三者的关系。《墨经》中写道:“景不徙,说在改为。"“光至,景亡。若在,尽古息。"说明影是不动的,如果影移,那是光源或物体发生移动,使原影不断消逝,新影不断生成的缘故。投影的地方,如果光一照,影子就会消失,如果影子存在,表明物体不动,只要物体不动,影子就始终存在于原处。墨家对本影、半影也作了解释。《墨经》中有这样的记载:“景二,说在重。”“景二,光夹。一,光一。光者,景也。”意思是一物有两种投影(本影、半影),说明它同时受到两个光源重复照射的结果(“说在者”,“光夹”)、一种投影,说明它只受一个光源照射,并且强调了光源与投影的联系(“光者,景也”)。与此相连,墨家还根据物和光源相对位置的变化,以及物与光源本身大小的不同来讨论影的大小及其变化。
3.对面镜的认识
墨家对凹面镜作了深入的观察和研究,并在《墨经》中作了明确、详细的记载。“鉴低,景一小而易,一大而正,说在中之外、内。”“低”表示深、凹之意;放在“中之内”,得到的像是比物体大而正立的。北宋沉括对凹面镜的焦距作了测定。他用手指置于凹面镜前,观察成像情况,发现随着手指与镜面距离的远近变化,像也发生相应的变化。在《梦溪笔谈》中作了记载:“阳燧面洼,以一指迫而照之则正,渐远则无所见,过此遂倒。”说明手指靠近凹面镜时,像的正立的,渐渐远移至某一处(在焦点附近),则“无所见”,表示没有像(像成在无穷远处);移过这段距离,像就倒立了。这一实验,既表述了凹面镜成像原理,同时也是测定凹面镜焦距的一种粗略方法。
墨家对凸透镜也进行了研究。《墨经》中写道:“鉴团,景一。说在刑之大。”“鉴团”即燕面镜,也称团镜。“景一”表明凸面镜成像只有一种。“刑”同形字,指物体,它总比像大。我们的祖先,利用平面镜能反射光线的特性,将多个平面镜组合起来,取得了有趣的结果。如《庄子·天下篇》的有关注解《庄子补正》中对此作了记载:“鉴以鉴影,而鉴以有影,两鉴相鉴,则重影无穷。”这样的装置,收到了“照花前后镜,花花交相映”的效果。《间经堂丛书》、《淮南万毕术》中记有“取大镜高悬,置水盆于其下,则见四邻矣。”表明很早就有人制作了最早的开管式“潜望镜”,能够隔墙观望户外的景物。
4.对虹的认识
虹是一种大气光学现象,从公元6世纪开始,我国古代对虹就有了比较正确的认识。唐初的孔颖达(574-648)曾概括了虹的成因,他认为“若云薄漏日,日照雨滴则虹生。”明确指出产生虹的3个条件,即云、日、“日照雨滴”。沉括对此也作过细致的研究,并作实地考察。在《梦溪笔谈选注》中写道:“是时新雨霁,见虹下帐前涧中。”予与同职扣涧观之,虹两头皆垂涧中。使人过涧,隔虹对立,相去数丈,中间如隔绡觳,自西望东则见;盖夕虹也。立涧之东西望,则为日所铄,都无所睹。”指出虹和太阳的位置正好是相对的,傍晚的虹见于东方,而对着太阳是看不见虹的。地虹有了认识之后,便可以人工造虹。8世纪中叶,唐代曾有过这样的试验:“背日喷呼水成虹霓之状”,表示背向太阳喷出小水珠,便能看到类似虹霓的情景。

伽利略从阿基米德检验国王皇冠的实验中受到启发,一面重复这个实验,一面想到这种方法的用途。当时欧洲各国的航海事业正在兴起,航海业带动了造船业和机械制造,采矿、冶金的发展,反过来又向科学技术提出许多新的问题。伽利略于是把他的注意力转向合金的物理和力学性质的研究,不久,他通过测定物体在水中的重量发现,物体投入水中减轻的重量,刚好等于它排开的水的重量。在这个重大发现的基础上,伽利略发明了一种比重秤,可以很方便地测定各种合金的比重。他还写了一篇论文,详细地介绍了比重秤的构造原理和使用方法。这件事,很快就在佛罗伦萨和其他城市传开了。

望远镜小史
17世纪初的一天,荷兰密特尔堡镇一家眼镜店的主人科比斯赫,他为检查磨制出来的透镜质量,把一块凸透镜和一块凹镜排成一条线,通过透镜看过去,发现远处的教堂的塔好象变大而且拉近了,于是在无意中发现了望远镜原理。1608年他为自己制作的望远镜申请专利,并遵从当局的要求,造了一个双筒望远镜。据说密特尔堡镇好几十个眼镜匠都声称发明了望远镜,不过一般都认为利比赫是望远镜的发明者。
望远镜发明的消息很快在欧洲各国流传开了,意大利科学家伽利略得知这个消息之后,就自制了一个。第一架望远镜只能把物体放大3倍。一个月之后,他制作的第二架望远镜可以放大8倍,第三架望远镜可以放大到20倍。1609年10月他作出了能放大30倍的望远镜。
伽里略用自制的望远镜观察夜空,第一次发现了月球表面高低不平,覆盖着山脉并有火山口的裂痕。此后又发现了木星的4个卫星、太阳的黑子运动,并作出了太阳在转动的结论。
几乎同时,德国的天文学家开普勒也开始研究望远镜,他在《屈光学》里提出了另一种天文望远镜,这种望远镜由两个凸透镜组成,与伽利略的望远镜不同,比伽利略望远镜视野宽阔。但开普勒没有制造他所介绍的望远镜。沙伊纳于1613年—1617年间首次制作出了这种望远镜,他还遵照开普勒的建议制造了有第三个凸透镜的望远镜,把二个凸透镜做的望远镜的倒像变成了正像。沙伊纳做了8台望远镜,一台一台地云观察太阳,无论哪一台都能看到相同形状的太阳黑子。因此,他打消了不少人认为黑子可能是透镜上的尘埃引起的错觉,证明了黑子确实是观察到的真实存在。在观察太阳时沙伊纳装上特殊遮光玻璃,伽利略则没有加此保护装置,结果伤了眼睛,最后几乎失明。
荷兰的惠更斯为了提高望远镜的精度在1665年做了一台筒长近6米的望远镜,来探查土星的光环,后来又做了一台将近41米长的望远镜。
使用物镜和目镜的望远镜称为折射望远镜,即使加长镜筒,精密加工透镜,也不能消除色象差,1668年英国科学家反射式望远镜,解决了色象差的问题。第一台反望远镜非常小,望远镜内的反射镜口径只有2.5厘米,但是已经能清楚地看到木星的卫星、金星的盈亏等。1672年牛顿做了一台更大的反射望远镜,送给了英国皇家学会,至今还保存在皇家学会的图书馆里。
牛顿曾认为折色象差不可救药,后来,证明过分悲观。1733年英国人哈尔制成一台消色差折射望远镜。1758年伦敦的宝兰德也制成同样的望远镜,他采用了折光原则不同的玻璃分别制造凸透镜和凹透镜,把各自形成的有色边缘相互抵消。
但是要制造很大透镜不容易,目前世界上最大的一台折射式望远镜直径为102厘米,安装在雅弟斯天文台。
反射式望远镜存在天文观测中发展很快,1793年英国赫瑟尔制做了反射式望远镜,反射镜直径为130米,用铜锡合金制成,重达1吨。1845年英国的洛斯制造的反射望远镜,反射镜直径为1.82米。1913年在威尔逊山天文台反望远镜,直径为254米。1950年在帕洛玛山上安装了一台直径5.08米反射镜的反射式望远镜。1969年在苏联高加索北部的帕斯土霍夫山上装设了直径为6米的反射镜,它是当时世界上最大的反射式望远镜,现在大型天文台大都使用反射式望远镜。

发电机史话
19世纪初期,科学家们研究的重要课题,是廉价地并能方便地获得电能的方法。
1820年,奥斯特成功地完成了通电导线能使磁针偏转的实验后,当时不少科学家又进行了进一步的研究:磁针的偏转是受到力的作用,这种机械力,来自于电荷流动的电力。那么,能否让机械力通过磁,转变成电力呢?著名科学家安培是这些研究者中的一个,他实验的方法很多,但犯了根本性错误,实验没有成功。
另一位科学家科拉顿,在1825年做了这样一个实验:把一块磁铁插入绕成圆筒状的线圈中,他想,这样或许能得到电流。为了防止磁铁对检测电流的电流表的影响,他用了很长的导线把电表接到隔壁的房间里。他没有助手,只好把磁铁插到线圈中以后,再跑到隔壁房间去看电流表指针是否偏转。现在看来,他的装置是完全正确的,实验的方法也是对头的,但是,他犯了一个实在令人遗憾的错误,这就是电表指针的偏转,只发生在磁铁插入线圈这一瞬间,一旦磁铁插进线圈后不动,电表指针又回到原来的位置。所以,等他插好磁铁再赶紧跑到隔壁房间里去看电表,无论怎样快也看不到电表指针的偏转现象。要是他有个助手,要是他把电表放在同一个房间里,他就是第一个实现变机械力为电力的人了。但是,他失去了这个好机会。
又过了整整6年,到了1831年8月29日,美国科学家法拉第获得了成功,使机械力转变为电力。他的实验装置与科拉顿的实验装置并没有什么两样,只不过是他把电流表放在自己身边,在磁铁插入线圈的一瞬间,指针明显地发生了偏转。他成功了。手使磁铁运动的机械力终于转变成了使电荷移动的电力。
法拉第迈出了最艰难的一步,他不断研究,两个月后,试制了能产生稳恒电流的第一台真正的发电机。标志着人类从蒸汽时代进入了电气时代。
一百多年来,相继出现了很多现代的发电形式,有风力发电、水力发电、火力发电、原子能发电、热发电、潮汐发电等等,发电机的构造日臻完善,效率也越来越高,但基本原理仍与法拉第的实验一样:少不了运动着的闭合导体,少不了磁铁。

核磁共振仪的发明
核磁共振仪广泛用于有机物质的研究,化学反应动力学,高分子化学以及医学,药学和生物学等领域。20年来,由于这一技术的飞速发展,它已经成为化学领域最重要的分析技术之一。
早在1924年,奥地利物理学家泡里就提出了某些核可能有自旋和磁矩。"自旋"一词起源于带电粒子,如质子、电子绕自身轴线旋转的经典图像。这种运动必然产生角动量和磁偶极矩,因为旋转的电荷相当于一个电流线圈,由经典电磁理论可知它们要产生磁场。当然这样的解释只是比较形象的比拟,实际情况要比这复杂得多。
原子核自旋的情况可用自旋量子数I表示。自旋量子获得,质量数的原子序数之间有以下关系:
质量数 原子序数 自旋量子数(I)
奇数 奇数或偶数 1/2, 3/2 , 5/2……
偶数 偶数 0
偶数 奇数 1,2,3……
1>0的原子核在自旋时会产生磁场;I为1/2的核,其电荷分布是球状;而I≥1的核,其电荷分布不是球状,因此有磁极矩。
I为0的原子核置于强大的磁场中,在强磁场的作用下,就会发生能级分裂,如果用一个与其能级相适应的频率的电磁辐射时,就会发生共振吸收,核磁共振的名称就是来源于此。
斯特恩和盖拉赫1924年在原子束实验中观察到了锂原子和银原子的磁偏转,并测量了未成对电子引起的原子磁矩。
1933年斯特恩等人测量了质子的磁矩。1939年比拉第一次进行了核磁共振的实验。1946年美国的普西尔和布少赫同时提出质子核磁共振的实验报告,他们首先用核磁共振的方法研究了固体物质、原子核的性质、原子核之间及核周围环境能量交换等问题。为此他们两位获得了1952年诺贝尔物理奖。50年代核磁共振方法开始应用于化学领域,1950年斯坦福大学的两位物理学家普罗克特和虞以NH 4NO3水溶液作为氮原子核源,在测定14N的磁矩时,发现两个性质截然不同的共振信号,从而发现了同一种原子核可随其化学环境的不同吸收能量的共振条件也不同,即核磁共振频率不同。这种现象称为"化学位移"。这是由于原子核外电子形成的磁场与外加磁场相互作用的结果。化学位移是鉴别官能团的重要依据。因为化学位移的大小与键的性质和键合的元素种类等有密切的关系。此外,各组原子核之间的磁相互作用构成自旋--自旋耦合。这种作用常常使得化学位移不同的各组原子核在共振吸收图上显示的不是单峰而是多重峰,这种情况是由分子中邻近原子核的数目,距离用对称性等因素决定,因此它有助于提示整个分子的。
由于上述成果高分辨核磁共振仪得以问世。开始测量的核主要是氢核,这是由于它的核磁共振信号较强。随着仪器性能的提高,13C,31P,15N等的核也能测量,仪器使用的磁场也越来越强。50年代制造出IT(特拉斯)磁场,60年代制造出2T的磁场,并利用起导现象制造出5T的起导磁体。70年代造出8T磁场。现在核磁共振仪已经被应用到从小分子到蛋白质和核酸的各种各样化学系统中。

发射光谱仪的发明
著名的英国科学家牛顿在1666年用三棱镜观察光谱,可以说是最早的光谱实验。此后不少科学家从事光谱学方面的研究。1800年,英国天文学家赫歇尔测量太阳光谱中各部分的热效应,在世界上首次发现了红外线。1801年里特发现了紫外线。1802年沃拉斯顿观察到太阳光谱的不连续性,发现中间有多条黑线,这本来是很重要的发现,他却误认为是颜色的分界线。1803年英国物理学家托马斯·杨进行了光的干涉的实验,第一次提供了测定波长的方法。
德国物理学家夫琅和费,重新发现和编绘了太阳光谱图,内有多条黑线(700多条),并对其中的重要黑线用从A到H等字母标记(人称"夫琅和费线"),这些黑线后来成为比较不同玻璃材料色散率的标准。这些成果在1814年至1815年间陆续发表。夫琅和费还发明了衍射光栅。开始他用银丝缠在两根螺杆上,做成光栅,后来建造了刻纹机,用金钢石在玻璃上刻痕,做成透射光栅。
光谱分析的应用研究是从基尔霍夫和本生开始的。本生是德国汉堡的化学教授。他发明了本生灯,对各种物质在高温火焰中发生的变化很有研究,基尔霍夫是汉堡的物理学教授,对光学熟悉。他们两位合作制成了第一台梭镜光谱仪(分光镜)。该仪器利用了牛顿1666年首创技术,使光通过三棱镜中,展开成为一道彩虹光带(光谱)。他们用透镜把物质在本生灯燃烧时发出的光线集成一束平行光,通过一条窄缝,再通过三棱镜,用望远镜放大观察所成的光谱。
基尔霍夫和本生发现,每种化学元素燃烧时发出的火焰都有独特的颜色,可以据此加以鉴别。1860年及1861年他们用光谱仪发现铯和铷。此后借助光谱分析方法研究目光,发现地球上许多元素太阳上也有。1868年法国天文学家詹森和英国天文学家罗克耶分别用光谱法发现了当时地球上还没有发现的一种元素,他们认为这是太阳大气中特有的元素,取名氦,即"太阳"的意思。这样光谱方法也应用到了天文学方面。
光谱方法研究工作急速的发展,也出现了新的问题,主要问题之一是缺乏足够精度的波长标准,致使观测结果混乱,无法相互交流。
1868年埃斯特朗发表"标准太阳光谱"图表,记有上千条夫琅和费线的小波长,以10-8厘米为单位,精确到6位数,为光谱工作者提供了极其有用的资料。为纪念他的,10-8厘米后来就埃斯特朗单位,简写作埃(A)。十几年后被更为精确的罗兰数据表所代替。
现代光谱仪不用三棱镜而用衍射光栅。这是一种上面刻有千条线的板,把光分开,然后把光谱拍摄或记录下来,再用电子仪器进行分析。
光谱仪广泛应用于冶金、地质、环境等各领域。

避雷针史话
一、避雷针首先是我国劳动人民制造和使用的避雷装置。有人说,捷克牧师普罗科普·迪维什于1754年安装了第一个避雷针。更多的人认为是美国的富兰克林于1753年制造了世界上第一个避雷针。实际上,我国在1688年以前就已经制造和首先使用了避雷针。
早在三国时期(公元220年到280年)和南北朝时期(公元420年到581年),我国古籍上就有“避雷室”的记载。据唐代王睿的《谷子》记载,我国汉代(公元前206年到公元220年)就有人提出,把瓦做成鱼尾形状,放在屋顶上就可以防止雷电引起的火灾。在我国的一些古建筑上,也发现设有避雷的装置,法国旅行家卡勃里欧别·戴马甘兰游历中国之后,于1688年写的《中国新事》一书中有这样一段记载:“当时中国新事屋宇的屋脊两头,都有一个仰起的龙头,龙口吐出曲折的金属舌头,伸向天空,舌根连着一根根细的铁丝,直通地下。这种奇妙的装置,在发生雷电的时刻就大显神通,若雷击中了屋宇,电流就会从龙口沿线下行泄至地下,起不了丝毫破坏作用。”由此可见,世界上第一个避雷针是由具有聪明才智的我国劳动人民制造的。
二、避雷针发展到今天,世界上发现了更安全的避雷针。更安全的避雷针已不是针状,而象鸡毛掸子。这种避雷针是由两位美国人发明的。据最近美国《纽约时报》报道,这种避雷针中心是一根管子,其顶端引出2000条细细的导线,这些导线呈辐射状分布。这种方式可以更好地驱散聚集在建筑物周围的静电荷。
三、“避雷针过时了”。目前,我国研制成功了半导体消雷器,它的防雷效果远远超过避雷针,也远远超过美国、法国、澳大利亚生产的同类产品。半导体消雷器具有两大功能:(1)当建筑物上空出现强雷云的时侯,它发出长达1米的电晕火花,中和天空电流,起到消减雷击的作用;(2)万一雷击下来,半导体消雷器上的有关装置,可以把雷击放出的强大电流阻挡住。
我国著名防雷专家武汉水利学院教授解广润建议在高大建筑物上安装这种半导体消雷器,以保护国家财产。解广润说,现在我国已有24个处于强雷区的单位装上了半导体消雷器,经过几年的试验,证明它确实一次又一次地使建筑物化危为安。他呼吁有关单位,特别是国防工程、气象、电力、通讯广播部门应尽快推广半导体消雷器,以减少雷击损失。

自行车是中国人发明的吗
关于自行车的发明说法较多。
①我国是世界上发明自行车最早的国家。自行车的始祖是我国公元前五百多年的独轮车。清康熙年间(1662~1722年),黄履庄曾发明过自行车。《清朝野史大观》卷十一载:“黄履庄所制双轮小车一辆,长三尺余,可坐一人,不须推挽,能自行。行时,以手挽轴旁曲拐,则复行如初,随住随挽日足行八十里。”这就是世界上最早的自行车。
②自行车为西欧人所发明。公元1790年,法国人西夫拉克研制成木制自行车,无车把、脚蹬、链条。车的外形像一匹木马的脚下钉着两个车轮,两个轮子固定在一条线上。由于这辆自行车没有驱动装置和转向装置,座垫低,西夫拉克自己骑在车上,两脚着地,向后用力蹬,使车子沿直线前进。1817年,德国的冯·德莱斯男爵发明了一种能自由活动的车把,使他的自行车转变比较方便。1818年,德莱斯在英国申请了专利。1839年,英国一位工人K·麦克米伦首创了用曲轴机构驱动后轮的脚踏自行车,可使人在骑自行车时双足离开地面。1861年的一天,巴黎的马车和婴儿车制造商米肖父子修理德莱斯式自行车,修好后在坡道上试车时,感到这种车放脚很困难,于是对它进行了改进,在车的前轮上安上脚蹬曲轴,从而发明了米肖型自行车,不久这种自行车便开始大量生产。大概在1870年前后,法国的马执又制造了一种前面驱动轮大,后面从动轮小的自行车,这种车的运行效果较好。1890年后,英国的亨伯公司生产出一种用链条传动的、车为菱型的自行车,这种形式的自行车一直沿用至今。
③自行车为俄国人发明。1801年9月的一天,俄国农奴阿尔塔莫诺夫骑着自己制造的木制自行车,行驶2500公里,赶到莫斯科向沙皇来历山大一世献礼。阿尔塔莫诺夫制造的自行车与法国人西夫拉克制造的车较相似。亚历山大一世见到阿尔塔莫诺夫制造的自行车,当即下令取消了他的奴隶身份。

我国古代的光学知识
光学的起源也和力学、热学一样,可以追溯到二、三千年前。我国的《墨经》就记载了许多光学现象,例如投影、小孔成像、平面镜、凸面镜、凹面镜等等。西方也很早就有光学知识的记载,欧几里得(Euclid,公元前约330-260)的《反射光学》(Catoptrica)研究了光的反射,阿拉伯学者阿勒·哈增(Al-Hazen ,965~1038)写过一部《光学全书》,讨论了许多光学现象。光学真正形成一门科学,应该从建立反射定律和折射定律的时代算起,这两个定律奠定了几何光学的基础。 光的本性也是光学研究的重要课题。微粒说把光看成是由微粒组成,认为这些微粒按力学规律沿直线飞行,因此光具有直线传播的性质。19世纪以前,微粒说比较盛行。但是,随着光学研究的深入,人们发现了许多不能用直进性解释的现象,例如干涉、衍射等,用光的波动性就很容易解释,于是光的波动说又占了上风。两种学说的争论构成了光学发展史中的一根红线。
1.取火的方法和对火的认识
我国古代取火的工具称为“燧”,有金燧、木燧之分。金燧取火于日,木燧取火于木。根据我国古籍的记载,古代常用“夫燧”、“阳燧”(实际上是一种凹面镜,因用金属制成,所以统称为“金燧”)来取火。古代人们在行军或打猎时,总是随身带有取火器,《礼记》中就有“左佩金燧”、“右佩木燧”的记载,表明晴天时用金燧取火,阴天时用木燧取火。阳燧取火是人类利用光学仪器会聚太阳能的一个先驱。讲到取火,古代还用自制的古透镜来取火的。公元前2世纪,就有人用冰作透镜,会聚太阳光取火。《问经堂丛书》、《淮南万毕术》中就有这样的记载:“削冰令圆,举以向日,以艾承其影,则火生。"我们常说,水火不兼容,但制成冰透镜来取火,真是一个奇妙的创造。用冰制成透镜是无法长期保存的,于是便出现用玻璃或玻璃来制造透镜。
2.针孔成像和影的认识
公元前4世纪,墨家就做过针孔成像的实验,并给予分析和解释。《墨经》中明确地写道:“景到(倒),在午有端,与景长,说在端。"这里的“午"即小孔所在处。这段文字表明小孔成的是倒像,其原因是在小孔处光线交叉的地方有一点(“端"),成像的大小,与这交点的位置无关。从这里也可以清楚看到,古人已经认识到光是直线行进的,所以常用“射"来描述光线径直向前。北宋的沉括在《梦溪笔谈》中也记述了光的直线传播和小孔成像的实验。他首先直接观察在空中飞动,地面上的影子也跟着移动,移动的方向与飞的方向一致。然后在纸窗上开一小孔,使窗外飞的影子呈现在窒内的纸屏上,沉括用光的直进的道理来解释所观察到的结果:“东则影西,西则影东"。墨家利用光的直线传播这一性质,讨论了光源、物体、投影三者的关系。《墨经》中写道:“景不徙,说在改为。"“光至,景亡。若在,尽古息。"说明影是不动的,如果影移,那是光源或物体发生移动,使原影不断消逝,新影不断生成的缘故。投影的地方,如果光一照,影子就会消失,如果影子存在,表明物体不动,只要物体不动,影子就始终存在于原处。墨家对本影、半影也作了解释。《墨经》中有这样的记载:“景二,说在重。”“景二,光夹。一,光一。光者,景也。”意思是一物有两种投影(本影、半影),说明它同时受到两个光源重复照射的结果(“说在者”,“光夹”)、一种投影,说明它只受一个光源照射,并且强调了光源与投影的联系(“光者,景也”)。与此相连,墨家还根据物和光源相对位置的变化,以及物与光源本身大小的不同来讨论影的大小及其变化。
3.对面镜的认识
墨家对凹面镜作了深入的观察和研究,并在《墨经》中作了明确、详细的记载。“鉴低,景一小而易,一大而正,说在中之外、内。”“低”表示深、凹之意;放在“中之内”,得到的像是比物体大而正立的。北宋沉括对凹面镜的焦距作了测定。他用手指置于凹面镜前,观察成像情况,发现随着手指与镜面距离的远近变化,像也发生相应的变化。在《梦溪笔谈》中作了记载:“阳燧面洼,以一指迫而照之则正,渐远则无所见,过此遂倒。”说明手指靠近凹面镜时,像的正立的,渐渐远移至某一处(在焦点附近),则“无所见”,表示没有像(像成在无穷远处);移过这段距离,像就倒立了。这一实验,既表述了凹面镜成像原理,同时也是测定凹面镜焦距的一种粗略方法。
墨家对凸透镜也进行了研究。《墨经》中写道:“鉴团,景一。说在刑之大。”“鉴团”即燕面镜,也称团镜。“景一”表明凸面镜成像只有一种。“刑”同形字,指物体,它总比像大。我们的祖先,利用平面镜能反射光线的特性,将多个平面镜组合起来,取得了有趣的结果。如《庄子·天下篇》的有关注解《庄子补正》中对此作了记载:“鉴以鉴影,而鉴以有影,两鉴相鉴,则重影无穷。”这样的装置,收到了“照花前后镜,花花交相映”的效果。《间经堂丛书》、《淮南万毕术》中记有“取大镜高悬,置水盆于其下,则见四邻矣。”表明很早就有人制作了最早的开管式“潜望镜”,能够隔墙观望户外的景物。
4.对虹的认识
虹是一种大气光学现象,从公元6世纪开始,我国古代对虹就有了比较正确的认识。唐初的孔颖达(574-648)曾概括了虹的成因,他认为“若云薄漏日,日照雨滴则虹生。”明确指出产生虹的3个条件,即云、日、“日照雨滴”。沉括对此也作过细致的研究,并作实地考察。在《梦溪笔谈选注》中写道:“是时新雨霁,见虹下帐前涧中。”予与同职扣涧观之,虹两头皆垂涧中。使人过涧,隔虹对立,相去数丈,中间如隔绡觳,自西望东则见;盖夕虹也。立涧之东西望,则为日所铄,都无所睹。”指出虹和太阳的位置正好是相对的,傍晚的虹见于东方,而对着太阳是看不见虹的。地虹有了认识之后,便可以人工造虹。8世纪中叶,唐代曾有过这样的试验:“背日喷呼水成虹霓之状”,表示背向太阳喷出小水珠,便能看到类似虹霓的情景。

察看更多可以去这边http://219.226.9.43/level1/lvlfinal.asp?ID_level1=30597&page=1
回答者: 冰火ice - 魔法师 五级 8-9 19:25
第二次世界大战期间,纳粹德国海军与盟国海军在大西洋上进行过一场激烈的海战.为了达到既能炸毁敌军舰只,又确保德军舰只安全的目的,德国海军在一些重要航道旁,布设了大量新发明的“音响水雷”.这种水雷比磁性水雷灵敏得多,它能在对方舰艇发动机音响的诱导下自动爆炸,从而使盟军舰只在接近德军舰艇之前就被消灭.

正当德军自以为得计时,这些音响水雷却在盟军舰只尚未来到时,接二连三自动爆炸,连一条盟军舰艇也未炸着,这件事让德国人百思不得其解.若干年后,经水声学家和海洋生物学家的研究发现,在德国海军布设水雷的海域里,生活着一种小虾,它们能发出某些频率的音响.这些音响与舰艇发动机音响的频率一致,于是大量小虾发出的巨大音响,诱爆了德军的音响水雷,使他们想依靠这种新式武器打击盟军舰艇的希望成了泡影.

事实上,海洋中的生物大部分都能发声,只不过有些发出的是人耳听不到的超声或次声,上述这种小虾发出的则是与舰艇发动机响声相似的可闻声.因此,在设计、制造、使用海洋测量仪器时,必须周密地考虑海洋生物发出的种种声波,否则就会像德

有关物理的故事有哪些
答:1、爱迪生发明电灯泡 19世纪初,人们开始使用煤气灯(瓦斯灯),但是煤气靠管道供给一但漏气或堵塞,非常容易出事。人们对于照明的改革十分殷切。爱迪生为自己订定了一个不可能的任务:除了改良照明之外,还要创造一套供电的系统。于是他和梦罗园的伙伴们,不眠不休的做了1600多次耐热材料和600多种植物纤维...

物理小故事 3篇关于物理的小故事
答:1、传说在1590年仅26岁的伽利略在比萨斜塔上进行了落验。他特请了一些大学教授来观看,许多人也闻讯前来围观。只见伽利略身带两个铁球,一个重45.4公斤(100磅),一个重0.454公斤(1磅),像出征的战士一样,威武地登上塔顶。当他向人们宣布,这一大一小的两个铁球同时下落,将会同时着地的时候,...

物理小故事 3篇关于物理的小故事
答:1、传说在1590年,26岁的伽利略在比萨斜塔上进行了一个著名的落体实验。他邀请了大学教授们作为观众,许多人也前来围观。伽利略身携两个铁球,一个重45.4公斤(100磅),另一个重0.454公斤(1磅),他像一个即将出征的战士一样,威风凛凛地登上了塔顶。当他宣布,这两个不同重量的铁球将同时着地...

著名物理学家的小故事
答:1、爱迪生的故事 爱迪生是世界闻名的发明家。他小时候因为家里穷, 只上了3 个月学, 十一二岁就开始卖报.他热爱科学, 常常把钱节省下来, 买科学书报和化学药品.他做实验的器具, 是从垃圾堆里拣来的一些瓶瓶罐罐。爱迪生12 岁的时候, 在火车上卖报.火车上有一节给乘客吸烟的专用车厢, 车长同意...

短一点的物理小故事。
答:1.爱因斯坦十六岁时报考瑞士苏黎世的联邦工业大学工程系,可是入学考试却告以失败。看过他的数学和物理考卷的该校物理学家韦伯先生却慧眼识英才,称赞他:“你是个很聪明的孩子,爱因斯坦,一个非常聪明的孩子,但是你有一个很大的缺点:就是你不想表现自己。”韦伯先生是讲对了,爱因斯坦在数学方面可以说...

物理小故事
答:一天,保姆要出去,临走前叮嘱牛顿:“我有事,先出去下,肚子饿了去煮鸡蛋吃,我烧好水了。”保姆回来发现牛顿把一块怀表拿去煮了。而牛顿却在研究发明。这个故事告诉我们不要太投入一件事,该收手时就收手。四、瓦特的故事 18世纪中叶,英国格拉斯葛大学,有位名叫里德斯德的教授,一天晚上,他把...

急求有关于物理测量的几个小故事
答:因为金子的密度大,而银子的密度小,因此同样重的金子和银子,必然是银子的体积大于金子的体积。所 以同样重的金块和银块放入水中,那么金块排出的水量就比银块的水量少。刚才的实验表明,皇冠排出的水量比金块多,说明皇冠的密度比金块的密度小,这就证明皇冠不是用纯金制造的。”阿基米德有条理的讲述,...

物理小故事50字!!!50字!!!
答:赫农王轻轻拉动绳索,奇迹出现了,大船缓缓地挪动起来,最终下到海里。国王惊讶之余,十分佩服阿基米德,并派人贴出告示“今后,无论阿基米德说什么,都要相信他。”2、阿尔伯特.爱因斯坦 爱因斯坦小时候,老师让同学们做工艺品,大家做得都很好,只有爱因斯坦拿出的是个很丑陋的小板凳。老师和同学们嘲笑他说...

物理学家有什么有趣的故事吗?
答:2、阿尔伯特.爱因斯坦 因斯坦小时候,老师让同学们做工艺品,大家做的都很好,只有爱因斯坦拿出的是个很丑陋的小板凳。老师和同学们嘲笑他,说世界上还有比这更丑陋的板凳吗?爱因斯坦说有,他真拿出两个更丑陋的。他说虽然前一个板凳很丑陋,但是比后来两个要好的多。爱因斯坦除在光电效应、相对论等方面...

求物理小故事
答:一位英国学者在波士顿利用玻璃管和莱顿瓶表演了电学实验。富兰克林怀着极大的兴趣观看了他的表演,并被电学这一刚刚兴起的科学强烈地吸引住了。随后他便开始了电学的研究。他在家里做了大量实验,研究了两种电荷的性能,说明了电的来源和在物质中存在的现象。十八世纪前,人们还不能正确地认识雷电到底是什么...