写出下列多项式的项数,次数,常数项:(1),a^2-a^2b+b^2+4/5 (2)x^2-2xy+y^2(3)x^2-2/3xy^2-1/2+y^2

作者&投稿:智邵 (若有异议请与网页底部的电邮联系)
下列说法正确的是(  )A.?2vt3的系数是-2B.32ab3的次数是6次C.x+y5是多项式D.x2+x-1的常数项为~

A、?2vt3的系数是-23;故A错误.B、32ab3的次数是1+3=4;故B错误.C、根据多项式的定义知,x+y5是多项式;故C正确.D、x2+x-1的常数项为-1,而不是1;故D错误.故选C.

这个用十字相乘

1、十字相乘法的方法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。
2、十字相乘法的用处:(1)用十字相乘法来分解因式。(2)用十字相乘法来解一元二次方程。
3、十字相乘法的优点:用十字相乘法来解题的速度比较快,能够节约时间,而且运用算量不大,不容易出错。
4、十字相乘法的缺陷:1、有些题目用十字相乘法来解比较简单,但并不是每一道题用十字相乘法来解都简单。2、十字相乘法只适用于二次三项式类型的题目。3、十字相乘法比较难学。
5、十字相乘法解题实例:
1)、 用十字相乘法解一些简单常见的题目
例1把m²+4m-12分解因式
分析:本题中常数项-12可以分为-1×12,-2×6,-3×4,-4×3,-6×2,-12×1当-12分成-2×6时,才符合本题
解:因为 1 -2
1 ╳ 6
所以m²+4m-12=(m-2)(m+6)
例2把5x²+6x-8分解因式
分析:本题中的5可分为1×5,-8可分为-1×8,-2×4,-4×2,-8×1。当二次项系数分为1×5,常数项分为-4×2时,才符合本题
解: 因为 1 2
5 ╳ -4
所以5x²+6x-8=(x+2)(5x-4)
例3解方程x²-8x+15=0
分析:把x²-8x+15看成关于x的一个二次三项式,则15可分成1×15,3×5。
解: 因为 1 -3
1 ╳ -5
所以原方程可变形(x-3)(x-5)=0
所以x1=3 x2=5
例4、解方程 6x²-5x-25=0
分析:把6x²-5x-25看成一个关于x的二次三项式,则6可以分为1×6,2×3,-25可以分成-1×25,-5×5,-25×1。
解: 因为 2 -5
3 ╳ 5
所以 原方程可变形成(2x-5)(3x+5)=0
所以 x1=5/2 x2=-5/3
2)、用十字相乘法解一些比较难的题目
例5把14x²-67xy+18y²分解因式
分析:把14x²-67xy+18y²看成是一个关于x的二次三项式,则14可分为1×14,2×7, 18y²可分为y.18y , 2y.9y , 3y.6y
解: 因为 2 -9y
7 ╳ -2y
所以 14x²-67xy+18y²= (2x-9y)(7x-2y)
例6 把10x²-27xy-28y²-x+25y-3分解因式
分析:在本题中,要把这个多项式整理成二次三项式的形式
解法一、10x²-27xy-28y²-x+25y-3
=10x²-(27y+1)x -(28y²-25y+3) 4y -3
7y ╳ -1
=10x²-(27y+1)x -(4y-3)(7y -1)
=[2x -(7y -1)][5x +(4y -3)] 2 -(7y – 1)
5 ╳ 4y - 3
=(2x -7y +1)(5x +4y -3)
说明:在本题中先把28y²-25y+3用十字相乘法分解为(4y-3)(7y -1),再用十字相乘法把10x²-(27y+1)x -(4y-3)(7y -1)分解为[2x -(7y -1)][5x +(4y -3)]
解法二、10x²-27xy-28y²-x+25y-3
=(2x -7y)(5x +4y)-(x -25y)- 3 2 -7y
=[(2x -7y)+1] [(5x -4y)-3] 5 ╳ 4y
=(2x -7y+1)(5x -4y -3) 2 x -7y 1
5 x - 4y ╳ -3
说明:在本题中先把10x²-27xy-28y²用十字相乘法分解为(2x -7y)(5x +4y),再把(2x -7y)(5x +4y)-(x -25y)- 3用十字相乘法分解为[(2x -7y)+1] [(5x -4y)-3].
例7:解关于x方程:x²- 3ax + 2a²–ab -b²=0
分析:2a²–ab-b²可以用十字相乘法进行因式分解
解:x²- 3ax + 2a²–ab -b²=0
x²- 3ax +(2a²–ab - b²)=0
x²- 3ax +(2a+b)(a-b)=0 1 -b
2 ╳ +b
[x-(2a+b)][ x-(a-b)]=0 1 -(2a+b)
1 ╳ -(a-b)
所以 x1=2a+b x2=a-b


例1 把2x^2-7x+3分解因式.
分析:先分解二次项系数,分别写在十字交叉线的左上角和左下角,再分解常数项,分
别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其等于一次项系数.
分解二次项系数(只取正因数):
2=1×2=2×1;
分解常数项:
3=1×3=1×3==(-3)×(-1)=(-1)×(-3).
用画十字交叉线方法表示下列四种情况:
1 1

2 3
1×3+2×1
=5
1 3

2 1
1×1+2×3
=7
1 -1

2 -3
1×(-3)+2×(-1)
=-5
1 -3

2 -1
1×(-1)+2×(-3)
=-7
经过观察,第四种情况是正确的,这是因为交叉相乘后,两项代数和恰等于一次项系数-7.
解 2x^2-7x+3=(x-3)(2x-1).
一般地,对于二次三项式ax2+bx+c(a≠0),如果二次项系数a可以分解成两个因数之积,即a=a1a2,常数项c可以分解成两个因数之积,即c=c1c2,把a1,a2,c1,c2,排列如下:
a1 c1
� ╳
a2 c2
a1a2+a2c1
按斜线交叉相乘,再相加,得到a1c2+a2c1,若它正好等于二次三项式ax2+bx+c的一次项系数b,即a1c2+a2c1=b,那么二次三项式就可以分解为两个因式a1x+c1与a2x+c2之积,即
ax2+bx+c=(a1x+c1)(a2x+c2).
像这种借助画十字交叉线分解系数,从而帮助我们把二次三项式分解因式的方法,通常
叫做十字相乘法.
例2 把6x^2-7x-5分解因式.
分析:按照例1的方法,分解二次项系数6及常数项-5,把它们分别排列,可有8种不同的排列方法,其中的一种
2 1

3 -5
2×(-5)+3×1=-7
是正确的,因此原多项式可以用十字相乘法分解因式.
解 6x^2-7x-5=(2x+1)(3x-5).
指出:通过例1和例2可以看到,运用十字相乘法把一个二次项系数不是1的二次三项式因式分解,往往要经过多次观察,才能确定是否可以用十字相乘法分解因式.
对于二次项系数是1的二次三项式,也可以用十字相乘法分解因式,这时只需考虑如何把常数项分解因数.例如把x^2+2x-15分解因式,十字相乘法是
1 -3

1 5
1×5+1×(-3)=2
所以x^2+2x-15=(x-3)(x+5).
例3 把5x^2+6xy-8y^2分解因式.
分析:这个多项式可以看作是关于x的二次三项式,把-8y^2看作常数项,在分解二次项及常数项系数时,只需分解5与-8,用十字交叉线分解后,经过观察,选取合适的一组,即
1 2
�╳
5 -4
1×(-4)+5×2=6
解 5x^2+6xy-8y^2=(x+2y)(5x-4y).
指出:原式分解为两个关于x,y的一次式.
例4 把(x-y)(2x-2y-3)-2分解因式.
分析:这个多项式是两个因式之积与另一个因数之差的形式,只有先进行多项式的乘法运算,把变形后的多项式再因式分解.
问:两上乘积的因式是什么特点,用什么方法进行多项式的乘法运算最简便?
答:第二个因式中的前两项如果提出公因式2,就变为2(x-y),它是第一个因式的二倍,然后把(x-y)看作一个整体进行乘法运算,可把原多项式变形为关于(x-y)的二次三项式,就可以用十字相乘法分解因式了.
解 (x-y)(2x-2y-3)-2
=(x-y)[2(x-y)-3]-2
=2(x-y) ^2-3(x-y)-2
=[(x-y)-2][2(x-y)+1]
=(x-y-2)(2x-2y+1).
1 -2

2 1
1×1+2×(-2)=-3
指出:把(x-y)看作一个整体进行因式分解,这又是运用了数学中的“整体”思想方法.

例5 x^2+2x-15

分析:常数项(-15)<0,可分解成异号两数的积,可分解为(-1)(15),或(1)(-15)或(3)

(-5)或(-3)(5),其中只有(-3)(5)中-3和5的和为2。

=(x-3)(x+5)


总结:①x^2+(p+q)x+pq型的式子的因式分解

这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和.因此,可以直接将某些二次项的系数是1的二次三项式因式分解: x^2+(p+q)x+pq=(x+p)(x+q)

②kx^2+mx+n型的式子的因式分解

如果能够分解成k=ac,n=bd,且有ad+bc=m 时,那么

kx^2+mx+n=(ax+b)(cx+d)
a b

c d


通俗方法
[编辑本段]
先将二次项分解成(1 X 二次项系数),将常数项分解成(1 X 常数项)然后以下面的格式写
1 1
X
二次项系数 常数项

若交叉相乘后数值等于一次项系数则成立 ,不相等就要按照以下的方法进行试验。(一般的题很简单,最多3次就可以算出正确答案。)

需要多次实验的格式为:(注意:此时的abcd不是指(ax^2+bx+c)里面的系数,而且abcd最好为整数)

a b

c d

第一次a=1 b=1 c=二次项系数÷a d=常数项÷b
第二次a=1 b=2 c=二次项系数÷a d=常数项÷b
第三次a=2 b=1 c=二次项系数÷a d=常数项÷b
第四次a=2 b=2 c=二次项系数÷a d=常数项÷b
第五次a=2 b=3 c=二次项系数÷a d=常数项÷b
第六次a=3 b=2 c=二次项系数÷a d=常数项÷b
第七次a=3 b=3 c=二次项系数÷a d=常数项÷b
......
依此类推
直到(ad+cb=一次项系数)为止。最终的结果格式为(ax+b)(cx+d)

例解:
2x^2+7x+6

第一次:
1 1

2 6

1X6+2X1=8 8>7 不成立 继续试

第二次
1 2

2 3

1X3+2X2=7 所以 分解后为:(x+2)(2x+3)

写出下列多项式的项数,次数,常数项:
(1),a^2-a^2b+b^2+4/5
项数4,次数3,常数项4/5:
(2)x^2-2xy+y^2
项数3,次数2,常数项:无:
(3)x^2-2/3xy^2-1/2+y^2
项数4,次数3,常数项-1/2

下列整式中哪些是单项式?哪些是多项式?是单项式的指出系数和次数,是...
答:解:1.负2分之1a的2次方 是单项式,系数是负2分之1,次数是2。2.7分之m4n的2次方 是单项式,系数是7分之1,次数是6。3.x的2次方加y的2次方减1 是多项式,项数是3,次数是2.4.x 是单项式,系数是1,次数是1.5.3x的2次方减y加3x的3次方加x的4次方减1是多项式。项数是5,...

多项式的次数和系数
答:次数是3;-5xy 的系数是-5 ,次数是2次。多项式:几个单项式的和叫做多项式。多项式中,每个单项式叫做多项式的项,不含字母的项叫做常数项,这些单项式中的最高次数,就是这个多项式的次数。如:3xy+4a+5b,这是一个多项式,它的项数是3,分别是3xy ,4a ,5b , 系数分别是3 . 4 . 5,次数是2 ...

怎么看一个多项式的次数和项数与常数项和几次几式
答:多项式的次数:是字母指数和最大的那个单项式的次数;项数:是单项式的个数(包括不含字母的常数项);常数项:是不含字母的项。总之:字母指数和最大的那个单项式的次数是几次就是“几次”,有几个单项式就是“几项”式。

多项式是几次几项,怎么求?
答:就叫几次几项式。例如:x^4+x^2-44是四次三项式,就是说这个多项式的最高次数是4次,并且由3个单项式组成。在计算时,要注意:1、相同次数的除系数外都一样的式子相加,系数相加,次数不变。2、多项式至少有两个单项式组成。3、“四次三项式”一般不写成“4次3项式”。

什么是多项式的次数和项数啊?请举个例子来详细地说明!
答:几个单项式的和叫做多项式,在多项式中,每个单项式叫做多项式的项.其中不含字母的项,叫做常数项,特别注意项的符号,一个多项式含有几项就叫几项式.例如 4xyz , 这是一个单项式,它的系数是4,次数是所有字母(3个字母)次数的和为3,项数是1.又如3x,这是一个单项式,它的系数是3,次数是1,项数是1...

多项式的次数和项数是什么?
答:多项式的次数取的是多项中次数最大的非零项的次数,多项式的项数指的是多项式有多少个次数不同的非0项相加减构成的。对于比较广义的定义,1个或0个单项式的和也算多项式。按这个定义,多项式就是整式。实际上,还没有一个只对狭义多项式起作用,对单项式不起作用的定理。0作为多项式时,次数定义为...

判断下列哪些是单项式,哪些是多项式。
答:(1)多项式,2项,系数为-1,次数为1,常数项为1 (2)单项式,系数为1,次数为g+1 (3)多项式,2项,系数为1、1,次数为2,常数项为0 (4)等式;左边为多项式,3项,系数为1、2、1,次数为2,常数项为0 (5)非整式 (6)非整式 (7)不等式;左边为单项式,系数为-1/5,次数为...

写出3个多项式,要求每个多项式的次数不小于3,项数不少于4项,其中至少...
答:由题意可得: xy 2 +xy+x 2 y+1;2xy 2 -3x+x 2 y+4;5xy 2 -xy-4x 2 y+6.

有一道题,是关于多项式的,a的次方*b的二次方*c的二次方,请问项数是什么...
答:这道题是两次三项式,项数是A的次方,B的二次方,C的二次方。系数全部是1,次数是2,因为次数三项中最高的就是2 次数不是4,不是把所有指数合起来,是选“项”中最高的那个

多项式次数
答:多项式的次数是多项式中次数最高的项的次数。对于一个多项式,我们首先需要明确它的项数。项数是表示多项式由多少个单项式的和组成的,这些单项式可以是常数、一次项、二次项、三次项等等。在确定多项式的项数后,我们可以通过观察找到次数最高的项。这个次数最高的项的次数,就是多项式的次数。例如,对于一...