中国煤层气产业发展现状与技术对策

作者&投稿:苍叛 (若有异议请与网页底部的电邮联系)
中国煤层气产业发展现状与技术对策~

王一兵1杨焦生1王金友2周元刚2鲍清英1
(1.中国石油勘探开发研究院廊坊分院廊坊065007;2.中国石油渤海钻探公司第二录井公司天津300457)
摘要:本文通过分析我国煤层气发展历程和现状,总结了我国从上世纪80年代以来煤层气发展经历了“前期评价、勘探选区、开发试验、规模开发”四个阶段。在分析我国煤层气地质条件基础上,认为已发现的煤层气田(富集区)煤层普遍演化程度高、渗透率低;总结了适合我国复杂地质条件的煤层气配套开发技术,包括钻井完井、储层保护、水力压裂、排采控制等,并分析了各种技术的应用效果,认为我国1000m以浅中高煤阶煤层气开发技术基本成熟。在此基础上预测了我国提高煤层气开发效果的技术发展方向。
关键词:煤层气 开发技术 压裂 排采
基金项目: 国家 973 项目 ( 2009CB219607) 、国家科技重大专项 “大型油气田及煤层气开发”课题 33,43( 2011ZX05033 001'',2011ZX05043) 。
作者介绍: 王一兵,男,1966 年 6 月生,2008 年获中国地质大学 ( 北京) 博士学位,高级工程师,多年从事煤层气勘探开发综合研究工作。E mail: wybmcq69@ petrochina. com. cn
The Development Status and Technical Countermeasures of China CBM Industry
WANG Yibing1YANG Jiaosheng1WANG Jinyou2ZHOU Yuangang2 BAO Qingying1
( 1. Langfang Branch,Research Institute of Petroleum Exploration and Development,PetroChina, Langfang 065007,China; 2. The second logging company of bohai drilling and exploration company,Petrochina,Tianjin 300457,China)
Abstract: Through analyzing CBM development history and present situation in China,this article have sum- marized the four stages in CBM development from the 1980's,which can be called“earlier period's appraisal,ex- plores and region optimization,development experiments,scale development”. Based on the analysis of the geolog- ical conditions ,it is revealed that CBM fields founded already are commonly characterized with high evolution de- gree,low permeability. Simultaneously,the corollary CBM development technologies suitable for China's complex geological conditions are summarized,including drilling / completion,coal-bed protection,hydraulic fracturing and dewatering control,also all technologies’application effect are evaluated. In general,it can be believed that the CBMdevelopmenttechnologiesinmiddleandhighrankcoal-bedshallowerthan1000mhavebeenbasicallyma- tured.Finally,thedirectionofdevelopmenttechnologiesisforecasted.
Keywords:CBM;developmenttechnologies;hydraulicfracturing;dewatering
我国煤层气资源丰富,预测 2000 m 以浅煤层气资源量 36. 8 万亿 m3( 国土资源部,2006) ,可采资源量约 11 万亿 m3,仅次于俄罗斯和加拿大,超过美国,居世界第三位。规模开发国内丰富的煤层气资源,可在一定程度上减轻我国对进口石油天然气的依赖,同时对实现我国能源战略接替和可持续发展、降低煤矿瓦斯含量和瓦斯排放、减少煤矿瓦斯灾害、保护大气环境具有重要意义。
1 煤层气规模开发已经起步,初步具备产业雏形
自上世纪 80 年代后期以来,国内石油、煤炭、地矿系统的企业和科研单位,以及一些外国公司,对全国 30 多个含煤区进行了勘探、开发和技术试验,在沁水盆地、鄂尔多斯盆地东缘韩城、大宁—吉县、柳林—兴县地区、安徽淮北煤田、辽宁阜新煤田等试验井都获得了较高的产气量。截至 2010 年底,全国已累计探明煤层气地质储量 3311 亿 m3,并针对不同煤阶的煤层气特点,掌握了实验室分析化验和地质评价技术,直井/丛式井钻井完井、多分支水平井钻井技术,空气/泡沫钻井及水平井注气保压欠平衡储层保护技术,注入/压降试井技术,压裂增产和排采等技术系列,在沁水盆地南部、鄂尔多斯盆地东缘、宁武盆地南部、阜新煤田、铁法煤田、淮南淮北等地分别获得了具有经济价值的稳定气流,为规模开发准备了可靠的资源、技术条件。
近年国内天然气市场的快速发展,天然气基础管网逐步完善,煤层气开发迎来前所未有的机遇。特别是 2007 年政府出台了煤层气开发补贴政策,极大地调动了相关企业投资煤层气产业的积极性,促进了煤层气产业的快速发展,近年全国煤层气开发井由不足百口增加到 5240 余口 ( 含水平井约 100 口) ,建成煤层气产能约 30 亿 m3/ 年,年产气量超过15 亿 m3( 图 1) ,形成沁南、鄂东 2 大煤层气区为重点的产业格局。预测到 “十二五”期间,全国地面钻井开发的煤层气产量可以达到 100 亿 m3以上。
我国煤层气发展,主要经历了四个发展阶段 ( 图 2) 。

图 1 中国历年煤层气开发井数与产量图


图 2 中国煤层气发展阶段划分

80年代前期评价阶段:在全国30多个煤层气目标区开展了前期地质评价研究;
1992~2000年勘探选区阶段:在江西丰城、湖南冷水江、山西柳林、晋城、河北唐山、峰峰、河南焦作、陕西韩城等地钻探煤层气井,柳林、晋城、阜新开展小井组试验;
2000~2005年开发试验阶段:在山西沁水、陕西韩城、辽宁阜新开展了开发先导试验工作;
2006年至今规模开发阶段:沁水煤层气田、鄂东煤层气田韩城区块、柳林区块、辽宁阜新、铁法等地煤层气地面开发初步形成规模并进入商业开发阶段,特别是2007年国家出台采政补贴政策,每生产1方煤层气国家补贴0.2元,极大地调动了生产企业的积极性,纷纷加大投入,煤层气产业进入快速发展阶段。2010年全国煤层气产量达到15亿方。
2 煤层气开发技术现状
在多年的勘探开发实践中,针对我国煤层气地质特点,逐步探索出适合我国配套工艺技术,如钻井完井、地面建设、集输处理等,形成了以中国石油、中联煤层气、晋煤集团等大型国有煤业集团、有实力的大型国际能源公司为代表的煤层气开发实体,以及煤层气钻井完井、地面建设、压缩运输等煤层气技术服务队伍,总体已经具备1000m以浅煤层气资源开发和产业化发展的条件。
不同演化程度的煤层煤岩性质不同,主要表现在煤岩的压实程度、机械强度、吸附能力等方面,其含气性、渗透性、井壁稳定性有很大差别(王一兵等,2006),因此不同煤阶的煤层气资源要求采用相应的技术手段来开发。经过多年的探索与发展,国内已初步形成针对不同地质条件和煤岩演化程度的煤层气开发钻井完井、压裂改造、排采技术系列。
2.1 钻井完井技术
2.1.1 中低煤阶高渗区空气钻井裸眼/洞穴完井开采煤层气技术
国内低煤阶区煤层渗透率一般大于10mD,中煤阶高渗区煤层渗透率也能大于5mD,对于此类高渗煤层的煤层气开采,一般不需压裂改造(低煤阶煤层机械强度低,压裂易形成大量煤粉堵塞割理),可对煤层段裸眼下筛管完井或采用洞穴完井方式,根据煤层在应力发生变化时易坍塌的特点造洞穴,扩大煤层裸露面积,提高单井产量;钻井施工时采用空气/泡沫钻井,既可提高钻速,又可有效减小煤层污染。
裸眼洞穴完井在国外如美国圣胡安盆地、粉河盆地的一些煤层气田开发中应用取得了良好效果(赵庆波等,1997,1999),特别是在高渗、超压的煤层气田开发中得到很好的应用效果。
常采用的井身结构有两种:
(1)造洞穴后不下套管,适用于稳定性较好的煤储层,是目前普遍采用的井身结构;
(2)造洞穴后下入筛管,可适用于稳定性较差的储层。
这一技术在国内鄂尔多斯盆地东缘中煤阶、湖南冷水江、新疆准噶尔南部进行试验,效果都不理想,需要进一步探索、完善。
2.1.2 中高煤阶中渗区大井组直井压裂开采煤层气技术
中高煤阶中渗区煤层渗透率一般0.5~5mD,采用套管射孔加砂压裂提高单井产量效果最明显。其技术关键在于钻大井组压裂后长期、连续抽排,实现大面积降压后,煤层吸附的甲烷气大量解吸而产气。这一技术在国内应用最广泛,技术最成熟。沁水盆地南部、鄂尔多斯东缘韩城、三交、柳林地区,辽宁阜新含煤区刘家区块等大多数深度小于1000m的煤层气井采用这一技术效果好,多数井获得了单井日产2000~10000m3/d的稳定气流,数百口井已稳产5~10年。
2.1.3 中高煤阶低渗区多分支水平井开采煤层气技术
该技术主要适用于机械强度高、井壁稳定的中高煤阶含煤区,通过钻多分支井增加煤层裸露面积,沟通天然割理、裂隙,提高单井产量和采收率,效果相当显著。同时,对于低渗(<0.5mD)薄煤层(<2m)地区,也是解决单井产量低、经济效益差的主要技术手段。
煤层气多分支水平井是指在一个或两个主水平井眼旁侧再侧钻出多个分支井眼作为泄气通道,分支井筒能够穿越更多的煤层割理裂缝系统,最大限度地沟通裂缝通道,增加泄气面积和气流的渗透率,使更多的甲烷气进入主流道,提高单井产气量。多分支水平井集钻井、完井和增产措施于一体(王一兵等,2006),是开发煤层气的主要手段之一。该技术具有三大技术优势:一是可以提高单井产量,约为直井的6~10倍,同时减少钻前工程、占地面积、设备搬安、钻井工作量和钻井液用量,节约套管和地面管线及气田管理和操作成本,从而提高开发综合效益;二是可以加快采气速度,提高采收率。用直井需要15~20年才能采出可采储量的80%,但用分支水平井仅需5~8年可采出70%~80%(李五忠等,2006),而且可以在很大程度上提高煤层气的采收率;三是多分支水平井的水平井眼不下套管,不压裂,避免压裂对煤层顶底板造成伤害,便于后续的采煤,是先采气后采煤的最佳配套技术。
目前我国在沁水盆地、鄂尔多斯盆地东缘、宁武盆地等煤层埋深300~800m的地区已完成多分支水平井100余口,沁水盆地南部单井日产量达到0.8万~5.5万m3,最高日产可达到10万m3,比直井压裂方法单井产量提高4~10倍。
2.2 储层保护技术
2.2.1 煤层气空气钻井技术
主要有空气钻井和泡沫钻井技术,主要优点是可实现欠平衡钻井,煤层损害小、钻速快、钻井周期短,综合钻井成本低。但空气/泡沫钻井也存在局限性,并不是任何地层都适用。由于空气/泡沫不能携带保持井眼稳定的添加剂,所以不能直接用空气钻穿不稳定地层。当钻遇含水层时,岩屑及更细的粉尘会变为段塞。由于液体在环空中出现,会润湿水敏性页岩,这会导致井塌而卡钻。而且湿岩屑会粘附在一起,在钻杆外壁上形成泥饼环,不能被空气从环空中带上来,当填充环空时,阻止了空气流动并产生卡钻。而且随着这些间歇的空气大段塞沿着井眼向上运移,它们会堵塞地面设备并且对井壁产生不稳定性效应。因此,空气钻井的关键在于保持井壁的稳定性。
2.2.2 水平井注气保压欠平衡保护技术
多分支水平井主井眼与洞穴井连通后,在水平井眼钻进过程中,在洞穴直井下入油管,洞穴之上下入封隔器,然后通过油管向洞穴直井注气,从水平井环空排气的钻井液充气方式,保持水平井眼环空压力,保证井眼稳定性(图3)。

图3 欠平衡钻井剖面示意图

空气压缩机将空气从直井注入,压缩空气、煤屑与清水钻井液在高速上返过程中充分混合,形成气、液、固相三相环空流动。原则上返出混合流体经旋转头侧流口进入液气分离器进行分离,混合液流从液体出口流入振动筛,气体夹杂煤粉从气流管线进入燃烧管线排放。在燃烧管线出口处,有大排量风机,将排出的气体尽快吹散。
如果三相分离器分离返出混合流体不明显,液体为雾状水滴时将分离器液流管线关闭,从分离器底部沉砂口进行煤屑和废水的收集和处理,气体夹杂煤粉从气体管线进入燃烧管线排放。如果分离器处理能力有限或燃烧管线堵塞,可临时使用节流管线应急排放混合物。在施工过程中要求地面管线畅通,各种阀门灵活可靠。
2.3 煤层气井水力压裂工艺技术
2.3.1 针对煤储层特征的压裂液
压裂液是煤层水力压裂改造的关键性环节,其主要作用是在目的层张开裂缝并沿裂缝输送支撑剂,因此着重考虑流体的粘度性质,不仅在裂缝的起裂时,具有较高的粘度,而且在压裂流体返排时具快速降低的性能。然而,成功的水力压裂改造技术还要求流体具有其他的性质。除了在裂缝中具有合适的粘度外,在泵送时还应具有低的摩擦阻力,能很好地控制流体滤失,快速破胶,施工结束后迅速返排出来等性能,同时应在经济上可行。
压裂液选择的基本依据是:对煤层气藏的适应性强,减少压裂液对储层的伤害;满足压裂工艺的要求,达到尽可能高的支撑裂缝导流能力。根据目前煤层气井储层的特点,压裂液研究应着重考虑以下几个方面:
储层温度25~50℃,井深300~1000m,属低温浅井范畴。因此,要求压裂液易于低温破胶返排,满足低温压裂液体系的要求,并且也考虑压裂液的降摩阻问题;煤层气属于低孔隙度、低渗特低渗透率储层,要求压裂液具有好的助排能力,并且压裂液彻底破胶;储层粘土矿物含量小,水敏弱,水化膨胀不是压裂液的主要问题,但储层低渗、低孔、压裂液的破胶返排、降低压裂液的潜在二次伤害是主要问题;要求压裂液滤失低,提高压裂液效率。
为了满足煤层压裂大排量、高砂比的施工要求,压裂液在一定温度下要具有良好的耐温、耐剪切性能,以满足造缝和携砂的要求;同时提高压裂液效率,控制滤失量。考虑较低的摩阻压力损耗,要求压裂液具有合适的交联时间,以保证尽可能低的施工泵压和较大的施工排量;采用适当的破胶剂类型及施工方案,在不影响压裂液造缝和携砂能力的条件下,满足压后快速破胶返排的需要,以降低压裂液对储层和支撑裂缝的伤害;要求压裂液具有较低的表面张力,破乳性能好,有利于压裂液返排;压裂液在现场应具有可操作性强、使用简便、经济有效、施工安全、满足环保等要求。
2.3.2 煤层压裂方案优化
针对一个区块的压裂方案,优化研究的总体思路是:在目标区块压裂地质特点分析的基础上,针对该区块主要的地质特点进行各工艺参数的优化研究。首先针对目标区块的物性特征确定优化的缝长和导流能力,然后逐一优化各施工参数,包括排量、规模、砂比、前置液百分数等,并且研究提出一系列协助实现优化缝长和导流能力,并保证支撑剖面尽可能实现最优的配套技术措施。
压裂施工参数的优化是指以优化缝长和导流能力为目标函数,通过三维压裂分析与设计软件,优化压裂施工参数。
前置液量决定了在支撑剂达到端部前可以获得多少裂缝的穿透深度。合理的前置液量是优化设计的基础和保证施工成功的前提。前置液用量的设计目标有两个:一是造出足够的缝长,二是造出足够宽度的裂缝,保证支撑剂能够进入,并保证足够的支撑宽度,满足地层对导流能力的需求。
排量的优化对压裂设计至关重要。研究试验发现,变排量施工可以对实现预期的缝长和裂缝高度有很好的控制。另一个重要作用是抑制多裂缝的产生,减少近井摩阻,有最新文献资料表明,通过先进的裂缝实时监测工具的反应,当排量超过一定值时,多裂缝的条数与排量呈正比关系。煤层易产生多裂缝的储层尤其应该尝试采取该项技术。
加砂规模优化包括平均砂液比的优化和加砂程序优化。平均砂液比的优化从施工安全角度,即从滤失系数和近井筒摩阻两个方面考虑,借鉴国内外施工经验,在煤层可能的滤失系数范围内,平均砂比20%~25%施工风险低。加砂程序优化必须将压裂设计研究中所有考虑因素和技术细节充分地体现出来。第一段砂液量的设计至关重要。如起步砂液比过高(或混砂车砂液比计量有误差),因开始加砂时可能造缝宽度不足,或起步砂液量过早滤失脱砂,会造成早期砂堵或中后期砂堵的后果;反之,如起步砂液比过低,可能造成停泵后第一批支撑剂还未脱砂,使停泵后裂缝仍有继续延伸的可能,使裂缝的支撑剖面更不合理。同时,滤失伤害也会增大。因此,起步砂液比的设计很重要。而从施工安全角度考虑,一般的做法是让第一段支撑剂进入裂缝后先观察一段时间,如压力无异常情况,再考虑提高阶段砂液比。
2.4 煤层气井抽排采气技术
煤层气以吸附状态为主,煤层气的产出机理主要包括脱附、扩散、渗流三个阶段(赵庆波等,2001),煤层气井产气需要解决的关键问题是:
(1)降低煤层压力至临界解吸压力以下;
(2)保持煤层水力裂缝及天然割理系统内不至于压力下降过快、过低而致使其渗透率急剧下降;
(3)有一定长的降压时间。
因此,煤层气采气工程应结合不同煤岩特性和室内研究工作,合理确定排采设备,控制动态参数,发挥煤层产气能力,同时在排采中要控制煤粉产生,减少煤储层应力敏感性对渗透性的不利影响。
煤层气井开采中煤粉迁移是普遍存在的现象。为了减少煤粉迁移对排采的影响,排采初期应保持液面缓慢稳定下降,生产阶段应避免液面的突然升降和井底压力激动,控制煤粉爆发,使之均匀产出并保持流动状态,防止堵塞煤层渗流通道和排采管柱。
煤层具有较强的塑性变形能力,应力敏感性强,在强抽排条件下会引起渗透性下降。为了促使煤层气井的高效排采(李安启等,1999),应保证煤层内流体压力持续稳定下降,避免由于下降过快导致煤层割理和裂缝闭合引起煤层渗透性的急剧下降。不同煤层具不同的敏感性,需通过实验和模拟确定最佳的降液速率。如:数值模拟确定晋试7井解吸压力以上每天降液速度不超过30m,解吸压力以下每天降液速度不超过10m;井底流压不低于1MPa。一般控制降液速度每天不超过10m,越接近煤层,降液速度越慢,当液面降至煤层以上20~30m时,稳定液面排采,进入稳定产气阶段后根据实际情况再适当降低液面深度。
3 煤层气开发技术发展趋势
与美国、加拿大、澳大利亚等煤层气工业发展较快的国家相比,我国煤层气地质条件复杂,主要表现在成煤期早、成煤期多,大部分煤田都经历多期次构造运动,煤层生气、运移、保存和成藏规律都很复杂。多年的勘探开发试验证实,煤层气富集区分布、高渗区分布都具有很强的不均一性,多数煤层气富集区渗透率都很低,导致大多数探井试采效果差,勘探成功率低。针对国内煤层气特点,提高我国煤层气开采效率的煤层气开发技术研究应包括以下几个方向。
3.1 高丰度煤层气富集区地质评价技术
高丰度煤层气富集区预测一般是通过地质学、沉积学、构造动力学、地球物理学、地下水动力学、地球化学等多学科联合研究,结合地震处理与解释方法,寻找煤层发育、盖层稳定、成煤期、生气期与构造运动期次相匹配的适合煤层气聚集的煤层气富集区。随着各地区勘探程度和地质认识程度的提高,一些开发区块或即将进入开发的区块,通过二维、三维地震储层反演与属性提取方法,在煤层气富集区预测孔隙、裂缝发育的高渗区,优化开发井网和井位部署,可有效指导煤层气高效开发。
3.2 提高煤层气开采效率的技术基础研究
以高丰度煤层气富集区为主要研究对象,以煤层气富集区形成机理和分布规律、开采过程中煤层气储层变化、流体相态转换、渗流和理论相应为重点研究内容,通过化学动力学、渗流力学等多学科联合与交叉研究,宏观研究与微观研究相结合,开展系统的野外工作、测试分析和理论研究。以煤层气井底压力响应为主要研究对象,利用多井试井技术和数值模拟技术,从静态和动态两个方面开展煤层气开发井间干扰机理与开发方式优选研究。研究适合我国地质条件的提高煤层气开采效率的储层改造基础理论,将有效指导煤层气开发技术的进步。
3.3 煤层气低成本高效钻井技术研究
针对当前300~1000m深度为主的煤层气资源,开展空气钻井技术攻关,发展车载轻型空气钻机。采用岩心实验、理论分析与生产动态分析相结合的方法,总结以往煤层气钻井设计方法和施工工艺,跟踪国内外多分支水平井、U型井、小井眼短半径水力喷射钻井、连续油管钻井等先进钻井技术,分析增产效果,优选适用技术。同时,还要考虑超过1000m深度的煤层气资源的开发技术。
3.4 煤层高效改造技术研究
通过煤层及顶底板力学实验与压裂液配伍性实验数据,分析煤层伤害的主要机理,研发出适合不同地质条件下煤层压裂的新型压裂液体系。结合典型含煤盆地煤层的地质特点,探索适合煤层气压裂改造的工艺技术。
参考文献
李安启,路勇.1999.中国煤层气勘探开发现状及问题剖析.天然气勘探与开发,22(3):40~43
李五忠,王一兵,田文广等.2006.沁水盆地南部煤层气可采性评价及有利区块优选.天然气,3(5):62~64
王一兵,孙景民,鲜保安.2006.沁水煤层气田开发可行性研究.天然气,2(1):50~53
王一兵,田文广,李五忠等.2006.我国煤层气选区评价标准探讨.地质通报,25(9~10):1104~1107
赵庆波.1999.煤层气地质与勘探技术[M].北京:石油工业出版社
赵庆波等.1997.煤层气勘探开发技术.北京:石油工业出版社
赵庆波等.2001.中国煤层气勘探.北京:石油工业出版社

徐凤银 刘 琳 曾雯婷 董玉珊 李延祥 周晓红
(中石油煤层气有限责任公司,北京 100028)
摘 要:“清洁化、低碳化” 是全球趋势。加快煤层气勘探开发步伐,对减少煤矿瓦斯事故、保护大气 环境、改善能源结构、保障能源安全具有重要战略意义。中国对煤层气开发力度不断加大,出台了价格优惠、 税收优惠、开发补贴、资源管理、矿权保护等一系列鼓励政策,形成中石油、晋煤集团、中联煤三大煤层气 企业,但目前产业整体规模较小。针对矿权问题,形成3种促进采煤采气协调发展的合作模式。即:沁南模 式、潞安模式和三交模式。在技术上已初步形成适合不同煤阶和不同地质条件下煤层气的勘探开发配套技术,建成了高水平的煤层气实验室,并在800m以深地区、低阶煤储层的开发等领域有实质性突破。
到2010年底,全国共钻煤层气井5426口,探明煤层气地质储量2900多亿立方米。累建产能超过30× 108m3/a,年产量15×108m3,商品气量11.8×108m3。建成管输、压缩/液化能力56×108m3/a。截至2011年 6月,全国煤层气日产量超过400×104m3。已建或在建了较完善的煤层气管网。沁南、韩城、大宁-吉县及 保德四个有利区都紧邻已有天然气主干管线。
中国煤层气资源丰富,潜力大、前景好,加大研发力度,依靠技术进步,特别建议加强四个方面的工作: 一是根据资源分布研究与调整对策;二是国家政策落实和企业间的相互合作须进一步加强;三是在提高单井 产量和整体效益方面强化技术攻关;四是建立统一的信息平台,避免无序竞争和重复性投资。这将会大大促 进煤层气产业快速发展。
关键词:中国;煤层气;开发;产业;技术;现状;前景
Exploration & Development Status and Prospects For China's Coal Bed Methane
Xu Fengyin,Liu Lin,Zeng Wenting,DongYushan,Li Yanxiang,Zhou Xiaohong
(PetroChina CBM Co.,Ltd,Beijing 100028,China)
Abstract:A global trend of "Clean and low-carbon" has been formed.To speed up CBM exploration and development is of significant importance to reduce coal mine gas accidents,to protect atmospheric environment and to improve energy structure.Greater efforts have been exerted to CBM development,given a series of encouraging policies,i.e.favourable price,tax preferences,development subsidy,resource management and mineral right protection.Three major CBM enterprises emerged including PetroChina,JAMG,and CUCBM,while the current industrial scale is relatively small.Considering the exploration right issues,3 cooperation modes are developed to promote the coordinated development of gas extraction and coal mining such as Qinnan mode,Lu'an mode and Sanjiao mode.Regarding technologies,a couple of exploration and development technologies are developed,tailored for various rank coal methane and for different geological conditions,and a high-profile CBM lab was built.Besides,some substantial breakthroughs have been made in exploring CBM buried deeper than 800m and in low-rank coal bed methane development.
By the end of year 2010,5,426 CBM wells have been drilled,about 290 bcm of the geological reserves proved.An annual production capacity of over 3 bcm were accumulatively built for surface extraction,producing 1.5 bcm/a,with 1.18 bcm of commercial production and 5.6 bcm/a for pipeline transportation,CNG and LNG capacity.The nationwide CBM yield has exceeded 4 million cubic meters per day by June,2011.Four favorable blocks,like Qinnan,Hancheng,Daning-jixian and Baode all get close to the major existing pipelines.
China is rich in CBM resources,with great potentials and promising prospects.Thus,the following four suggestions are proposed:to work out proposals based on resource distribution;to further coordinate governmental policies and entrepreneur performance;to strive to make technological breakthroughs in increasing single well yield and in promoting integrated economic efficiency;to establish a unified information platform to avoid disorderly competition and repeated investment.All these four proposals are likely to stimulate the progress of CBM industry.
Key words:China;CBM;development;industry;technology;status;prospects
引言
煤层气俗称瓦斯,成分主要是甲烷,形成于煤化过程中,主要有吸附在煤孔隙表面、分布在煤孔隙 及裂隙、溶解在煤层水中三种赋存形式,以吸附状态为主。当煤层生烃量增大或外界温度、压力条件改 变时,三种赋存形式可以相互转化。“清洁化、低碳化” 是全球趋势,能源转型和低碳经济已成为世界 各国经济社会发展的重要战略。
煤层气开发利用具有“一举三得” 的优越性。首先它是一种清洁、高效、安全的新型能源,燃烧 几乎不产生任何废气,有利于优化能源结构,弥补能源短缺;再者,瓦斯是煤矿安全“第一杀手”,它 的开发有利于煤矿安全生产,减少煤矿瓦斯事故;同时它也是一种强烈温室效应气体,温室效应是CO2 的20倍,开发煤层气可以有效减少温室效应。总体体现出经济、安全和环保三大效益。加快煤层气勘 探开发步伐,对减少煤矿瓦斯事故、保护大气环境、改善能源结构、保障能源安全具有重要战略意义。煤层气的开采方式分为井下抽采与地面抽采两种方式。地面抽采在钻完井、测录井、压裂、排采、集输 工艺上与常规油气开采技术基本相同。
1 世界煤层气资源及产业现状
1.1 资源分布
全世界埋深小于2000m的煤层气资源量约为260×1012m3,主要分布在俄罗斯、加拿大、中国、美 国、澳大利亚等国家(图1)。

图1 全世界煤层气资源分布情况

1.2 产业现状
目前,美国、加拿大、澳大利亚等 国家煤层气产业发展趋于成熟。美国自 20世纪80年代以来,有14个含煤盆地 投入煤层气勘探开发,现已探明可采储 量3×1012m3。2009年,煤层气生产井 5万余口,产量542×108m3。煤层气产 量占天然气总产量比重日益增大,2009 年煤层气产量比例达到9%。加拿大煤 层气产业发展迅猛。1987年开始勘探,2002年规模开发,2009年生产井7700 口,产量达60×108m3。澳大利亚也已 形成工业规模。主要分布在东部悉尼、苏拉特、鲍恩三个含煤盆地,2005年生产井数1300口,产量 12×108m3,2009年产量达48×108m3。
1.3 技术现状
通过长期的理论与技术研发,目前国际上形成4大主体技术,4项工程技术。4大主体技术包括: 地质选区理论和高产富集区预测技术,煤层气储层评价技术,空气钻井、裸眼洞穴完井技术,多分支水 平井钻井技术。
4项工程技术包括:连续油管钻井、小型氮气储层改造技术,短半径钻井和U形水平井技术,注氮 气、二氧化碳置换煤层气增产技术,采煤采气一体化技术。
2 中国煤层气产业现状
2.1 勘探开发现状
受美国、加拿大、澳大利亚等国家煤层气快速发展的影响,加之国家出台一系列优惠政策,中国煤 层气开发规模和企业迅速发展,已形成中国石油、晋煤集团、中联煤三大主要煤层气生产企业。
到2010年底,全国共钻煤层气井5426口,探明煤层气地质储量2900多亿立方米。累建产能超过 30×108m3/年,地面抽采实现年产量15×108m3,商品气量11.8×108m3。建成管输、压缩/液化能力 56×108m3/a。截至2011年6月,全国煤层气日产量超过400×104m3。
中国石油:2010年12月,商务部等四部委宣布为进一步扩大煤层气开采对外合作,新增中国石 油、中国石化以及河南省煤层气公司三家企业作为第一批试点单位。目前中国石油登记煤层气资源超过 3×1012m3,探明地质储量占全国64%,重点分布在沁水、鄂东两大煤层气盆地。近几年来,积极开展 煤层气前期评价、勘探选区及开发先导试验,投资力度大幅度增加,发现沁水、鄂东两大千亿立方米规 模以上煤层气田,逐步形成沁南、渭北、临汾与吕梁四个区块的开发格局。截止到2010年底,商品气 量近4×108m3。
通过几年的探索,与煤炭企业和地方政府合作,形成3种促进采煤采气协调发展的合作模式。即: 沁南模式:矿权重叠区协议划分,分别开发,双方开展下游合作;潞安模式:整体规划、分步实施,共 同维护开采秩序,避免重复性投资;三交模式:先采气、后采煤,共同开发。这些模式得到张德江副总 理和国家有关部委的肯定。
已建或在建了较完善的煤层气管网。沁南、韩城、大宁-吉县及保德四个有利区都紧邻已有天然气 主干管线(图2)。
建成了高水平的煤层气实验室,测试样品涵盖全国绝大多数煤层气勘探开发区,工作量占全国 80%,技术水平居国内领先。
主要实验技术包括:含气量测试技术,等温吸附测试技术,煤储层物性分析技术,煤层压裂伤害测 试技术等。
晋煤集团:到2010年底,完成钻井2510口,地面抽采产量达到9×108m3。建成寺河-晋城10× 108m3/a输气管线;参股建成晋城-博爱输气管线。与香港港华共同投资组建煤层气液化项目日液化量 可达25×104m3;投产120兆瓦煤层气发电厂。开发地区涉及山西沁水、阳泉、寿阳、西山,甘肃宁 县,河南焦作等。
中联煤并中海油:中联煤目前有矿权面积2×104km2,其中对外合作区块面积达1.6×104km2。截 至2010年底,在沁水盆地潘河建成国家沁南高技术产业化示范工程,以及端氏国家油气战略选区示范 工程。
目前完成钻井672口,投产230口,日产气50×104m3。2010年,中海油通过收购中联煤50%股 份,成功介入煤层气勘探开发,为发展煤层气产业打下了基础。

图2 中国石油天然气主干管网示意图

阜新煤业:阜新煤炭矿业集团与辽河石油勘探局合作,开展了三种煤层气合作开采模式,显著提高 了整体开发效益。三种开发模式包括:未采区短半径水力喷射钻井见到实效;动采区应用地面负压抽采 技术,实现了煤气联动开采;采空区穿越钻井取得成功。2010年已钻井52口,日产气10×104m3,商 品气量3226×104m3,建成CNG站3座,主要供盘锦、阜新市CNG加气站。
中石化:煤层气矿权区主要为沁水盆地北部和顺区块及鄂东延川南区块。2010年完成钻井34口,产气84×104m3,目前日产气近3000m3。2010年,华东局与淮南矿业签署了 “煤层气研究开发合作意 向书”,在淮南潘谢矿区优选出100km2有利区块,共同开发煤层气资源。2011年,与澳大利亚太平洋 公司在北京签署了一项框架协议,双方确立了非约束性关键商务条款。
其他:龙门、格瑞克、远东能源及亚美大陆等合资公司及其它民企纷纷介入煤层气勘探开发,加大 产能建设规模,其中亚美大陆目前日产气19.7×104m3。
总体来看,沁水盆地南部成为我国煤层气开发的热点,共建产能近25×108m3/a,目前日产气近 380×104m3,实现大规模管网外输和规模化商业运营,初步形成产运销上下游一体化的产业格局。
2.2 政府优惠政策与技术支持
为了鼓励煤层气产业发展,中国政府出台了一系列优惠政策,包括价格优惠、税收优惠、开发补 贴、资源管理及矿权保护等等(表1),取得了明显效果。
表1 中国政府鼓励煤层气产业发展的优惠政策


与此同时,在技术层面也给予了强有力的支持。2007年以来,国家发改委专门组建了煤层气开发 利用、煤矿瓦斯治理两个国家工程研究中心,科技部设立了 “大型油气田及煤层气开发” 国家科技重 大专项。中国石油成立了专业煤层气公司,并设立“煤层气勘探开发关键技术与示范工程” 重大科技 专项。这些都为煤层气产业发展与技术进步创造了条件。
2.3 技术现状
我国的地质条件和美国等有所区别。目前,煤层气开发都源于美国最早的理论。随着规模化深入开 发,现场实验了很多不同类型煤阶和煤体结构、构造条件、水文地质条件下的煤层气储存特点。已经证 明,这套理论是否完全适合中国煤层气地质条件还有待进一步证实。针对中国不同盆地地质条件研发的 不同的勘探开发技术,有些已经取得了突破性进展。
2.3.1 地质上有新认识
有利区评价方法有新突破:通过煤岩特征、含气量、渗透率、产气量等地质综合研究,建立起富集 高产区评价标准,提出了产能建设区开发单元的划分标准和方法。
800m以深煤层气井产量有突破:一般认为,随着煤层埋深的增加压力随之增大,渗透率急剧减小、 产气量也随之减少。目前国内商业开发深度都在800m以浅地区。随着勘探开发的深入推进,800m以 深井也获得了工业气流(最高产气量2885m3/d)(图3),但煤层产气规律尚不清楚,正在通过加强研 究及大井组排采试验得以证实。

图3 800m以深井排采曲线

煤储层渗透率普遍较低,储层保护是关键:煤储存条件的研究是煤层气开发关键的制约因素。沁水 盆地3#煤渗透率(0.013~0.43)×10-3μm2,平均0.112×10-3μm2;鄂东(0.22~12)×10-3μm2,平均1×10-3μm2。总体来看,煤层物性差、非均质性强,因此,钻井过程中加强储层保护是关键。钻 井、压裂过程中应尽量采用对井筒周围煤储层的危害小的欠平衡钻井及低伤害压裂液。
2.3.2 现场管理有新措施
高煤阶开发井网井距有新探索。由于我国高煤阶煤层气储层物性与外国有较大差异,开发证实一直 沿用的300m×300m井距不完全适合,主要表现在高产井数少,达产率低,产量结构不合理。为此,通 过精细地质研究,以提高单井产量为目标,对不同井距产气效果数值模拟并进行先导试验,探索了高煤 阶煤层气开发的200m×200m井网和井距。与此同时,在水平井的下倾部位实施助排井也初见成效。
2.3.3 工程技术配套有新进展
三维地震勘探:韩城地区实施100km2三维地震,资料品质明显好于二维,小断层的刻画更加清晰(图4),有效地指导了井网部署。

图4 韩城地区三维与二维剖面对比

羽状水平井钻井:通过市场化运作,打破了 外国公司在羽状水平井施工领域的垄断地位,摆 脱了羽状水平井钻井完全依赖外国公司的局面,成本大幅度降低。
压裂配套工艺:在对煤层实验分析的基础 上,结合大量的压裂实践,形成以 “变排量、低 伤害” 为原则,“高压井处理技术、分层压裂技 术” 等新工艺,采用低密度支撑剂、封上压下、 一趟管柱分压两层等工艺技术。
排采技术:形成缓慢、稳定、长期、连续八 字原则;为培养高产井形成三个关键环节:液面 控制、套压控制、煤粉控制;针对低成本战略,形成井口排采设备的两种组合:电动机+抽油 机,气动机+抽油机。
地面集输处理:标准化设计、模块化建设、 自动化管理,基本实现低成本高效运营。
2.4 利用现状
2009年全国建成6家煤层气液化厂,液化产能260×104m3/d,2010年为300×104m3/d,2020年 可达到700×104m3/d。除此之外,还主要用于低浓度瓦斯发电,居民生活,合成氨、甲醛、甲醇、炭 黑等化工原料,已逐步建立起煤层气和煤矿瓦斯开发利用产业体系。
2.5 存在问题
技术上:技术是制约目前产业进展缓慢的主要问题。目前存在的主要问题包括:煤层气高渗富集区 的控气因素,符合我国煤层气地质条件、用以指导生产实践的开发理论,适合我国地质条件的完井、压 裂、排采等关键技术与相应设备等。
管理上:主要包括:煤层气、煤炭矿权重叠,先采气、后采煤、发电上网等政策实施困难较多,对 外合作依赖程度高,自营项目受到限制,管道规模小,市场分散、不确定性大等。
3 煤层气发展前景与建议
随着国民经济的发展,天然气需求快速增长为煤层气发展提供了机会。2000年以来,天然气年均 增长速度达到16%(图5),2009年底,全国天然气消费总量875×108m3,2010年,天然气需求量超 过1400×108m3,供应能力约1000×108m3。2015年,预计天然气需求量2600×108m3,供应能力只有 1600×108m3,到2020年,天然气缺口将超过1000×108m3,这就为煤层气等非常规气的发展提供了 空间。
3.1 发展前景
据有关规划,到2015年,全国地面开发煤层气产量将达到100×108m3;2020年,天然气产量约 2020×108m3,其中非常规天然气产量达到620×108m3,地面开发煤层气将达到200×108m3。

图5 2000~2008年中国天然气消费量变化趋势

与此同时,各相关企业也制定了 “十二五” 发展目标(表2)。
表2 全国重点地区及企业煤层气地面开发预测表


上述目标能否顺利实现,前景如何,勘探开发及产业规模能否迅速发展,主要取决于国家政策的进 一步落实以及几大主要企业的投入。尤为重要的是这些企业针对煤层气赋存条件的技术进步与突破,而 非资金问题,这一点必须引起高度重视。中国石油将会进一步加大投入,促进煤层气产业快速发展。主 要加大沁水盆地南部和鄂尔多斯盆地东部两个重点产业基地的勘探开发力度,积极探索外围盆地煤层气 开发配套技术。预计:2012年新增探明煤层气地质储量2000×108m3,为建产能提供资源保障;2013 年建成生产能力45×108m3/年,2015年产量达到45×108m3,商品量40×108m3,成为国内第一煤层气 生产企业。同时,成为业务技术主导者、规范标准制定者、行业发展领跑者。到2020年,煤层气商品 量预计达到100×108m3,成为中国石油主营业务重要组成部分和战略经济增长点。
3.2 对策与建议
3.2.1 根据资源分布研究与调整对策
全国埋深小于2000m的煤层气总资源量为36.8×1012m3,可采资源量约10.8×1012m3。资源量大 于1×1012m3盆地有8个,资源量合计28×1012m3,占全国76%,主要分布于中西部地区。埋藏深度小 于1000m的资源量为14×1012m3,是目前开发的主要资源。低阶煤煤层气资源量占43%,但目前主要 开发的是中高阶煤煤层气资源。因此,现在必须加强对西部地区中深层(埋深大于800m)和中低阶煤 煤层气开发的研究与开发试验力度,力求更大范围的实质性突破。
3.2.2 国家政策落实和企业间的相互合作须进一步加强
完善相关政策措施,制定煤层气、煤炭开发统一规划,做到无缝衔接,切实落实“先采气、后采 煤”,实现资源充分利用。采煤采气3种合作方式还需要进一步扩展;积极推进煤层气产业发展与煤矿 瓦斯防治一体化合作。
3.2.3 在提高单井产量和整体效益方面强化技术攻关
针对煤层气勘探开发关键技术需要加强攻关。进一步研发针对煤层气地质特点而形成配套合适的钻 探、压裂、排采、管输等专有设施和设备,加大发展羽状水平井开发关键技术力度。
3.2.4 建立统一的信息平台,避免无序竞争和重复性投资
强化信息渠道,实现资源共享,避免无序竞争和重复性投资。建立煤层气行业统一的信息管理系统 是一项非常重要的基础工作。包括两方面内涵:企业内部应加强煤层气田的数字化建设,国家层面应加 强行业技术与产业信息的统计和交流发布,为煤层气行业提供统一的信息化建设标准。
结束语
低碳经济是我国能源经济发展的必由之路。为了从源头上减少碳排放,引领能源结构和产业多元 化,天然气供需缺口将长期存在,对煤层气需求会不断增加。中国煤层气资源丰富,目前产业整体规模 小,但潜力大、前景好。加大研发力度,依靠技术进步,将大大促进煤层气产业快速发展。
参考文献
[1]徐凤银等.煤层气勘探开发的理论与技术发展方向[J].中国石油勘探,2008,(5)
[2]宋岩等.煤层气成藏机制及经济开发理论基础[M].北京:科学出版社,2005
[3]李景明等.中国煤层气资源特点及开发对策[J].天然气工业,2009,(4)
[4]郭炳政.韩城区块煤层气勘探开发现状与启示,2006年煤层气学术研讨会论文集[C].北京:地质出版社
[5]赵庆波等.煤层气地质选区评价理论与勘探技术[M].北京:石油工业出版社,2009
[6]陈振宏等.煤粉产出对高煤阶煤层气井产能的影响及其控制[J].煤炭学报,2009,(34)2
[7]孙茂远.煤层气资源开发利用的若干问题[J].中国煤炭,2005,(3)
[8]刘洪林,李景明,宁宁,李贵中.我国煤层气勘探开发现状、前景及产业化发展建议[J].天然气技术,2007,(04)
[9]鲜保安,崔思华,蓝海峰,李安启.中国煤层气开发关键技术及综合利用[J].天然气工业,2004,(05)
[10]叶建平.中国煤层气勘探开发进展综述[J].地质通报,2006,(Z2)
[11]崔荣国.国内外煤层气开发利用现状[J].国土资源情报,2005,(11)
[12]秦勇,程爱国.中国煤层气勘探开发的进展与趋势[J].中国煤田地质,2007,(1)
[13]彭贤强,张宝生,储王涛,刘玲莉.中国煤层气开发综合效益评价[J].天然气工业,2008,(3)
[14]李五忠,田文广,孙斌,王宪花,赵玉红.低煤阶煤层气成藏特点与勘探开发技术[J].天然气工业,2008,(3)
[15]严绪朝,郝鸿毅.国外煤层气的开发利用状况及其技术水平[J].石油科技论坛,2007,(6)
[16]翟光明,何文渊.抓住机遇,加快中国煤层气产业的发展[J].天然气工业,2008,(3)
[17]Working Document of the NPC Global Oil &Gas Study.Topic Paper#29 Unconventional GAS.July 18,2007.
[18]司光耀,蔡武,张强国内外煤层气利用现状及前景展望[J].中国煤层气,2009,(6)
[19]Facing the Hard Truths about Energy[R].Washington,D.C:National Petroleum Council,2007.
[20]侯玉品,张永利,章梦涛.超短半径水平井开采煤层气的探讨[J].矿山机械,2005,(6)
[21]严绪朝,郝鸿毅.国外煤层气的开发利用状况及其技术水平[J].石油科技论坛,2006,(6)
[22]刘贻军.应用新技术促进煤层气的开发[J].地质通报,2007,(26)

王一兵1 杨焦生1 王金友2 周元刚2 鲍清英1

基金项目:国家973项目(2009CB219607)、国家科技重大专项“大型油气田及煤层气开发”课题33,43(2011ZX05033-001〃,2011ZX05043)。

作者介绍:王一兵,男,1966年6月生,2008年获中国地质大学(北京)博士学位,高级工程师,多年从事煤层气勘探开发综合研究工作。E-mail:wybmcq69@petrochina.com.cn

(1.中国石油勘探开发研究院廊坊分院 廊坊 065007;2.中国石油渤海钻探公司第二录井公司 天津 300457)

摘要:本文通过分析我国煤层气发展历程和现状,总结了我国从上世纪80年代以来煤层气发展经历了“前期评价、勘探选区、开发试验、规模开发”四个阶段。在分析我国煤层气地质条件基础上,认为已发现的煤层气田(富集区)煤层普遍演化程度高、渗透率低;总结了适合我国复杂地质条件的煤层气配套开发技术,包括钻井完井、储层保护、水力压裂、排采控制等,并分析了各种技术的应用效果,认为我国1000m以浅中高煤阶煤层气开发技术基本成熟。在此基础上预测了我国提高煤层气开发效果的技术发展方向。

关键词:煤层气 开发技术 压裂 排采

The Development Status and Technical Countermeasures of China CBM Industry

WANG Yibing1 YANG Jiaosheng1 WANG Jinyou2 ZHOU Yuangang2 BAO Qingying1

(1. Langfang Branch, Research Institute of Petroleum Exploration and Development, PetroChina, Langfang 065007, China; 2.The second logging company of bohai drilling and exploration company, Petrochina, Tianjin 300457, China)

Abstract: Through analyzing CBM development history and present situation in China, this article have sum- marized the four stages in CBM development from the 1980's,which can be called “earlier period's appraisal,ex- plores and region optimization,development experiments,scale development”.Based on the analysis of the geolog- ical conditions , it is revealed that CBM fields founded already are commonly characterized with high evolution de- gree, low permeability. Simultaneously, the corollary CBM development technologies suitable for China's complex geological conditions are summarized, including drilling/completion,coal-bed protection,hydraulic fracturing and dewatering control, also all technologies' application effect are evaluated. In general, it can be believed that the CBM development technologies in middle and high rank coal-bed shallower than 1000 m have been basically ma- tured. Finally, the direction of development technologies is forecasted.

Keywords: CBM; development technologies; hydraulic fracturing; dewatering

我国煤层气资源丰富,预测2000m以浅煤层气资源量36.8万亿m3(国土资源部,2006),可采资源量约11万亿m3,仅次于俄罗斯和加拿大,超过美国,居世界第三位。规模开发国内丰富的煤层气资源,可在一定程度上减轻我国对进口石油天然气的依赖,同时对实现我国能源战略接替和可持续发展、降低煤矿瓦斯含量和瓦斯排放、减少煤矿瓦斯灾害、保护大气环境具有重要意义。

1 煤层气规模开发已经起步,初步具备产业雏形

自上世纪80年代后期以来,国内石油、煤炭、地矿系统的企业和科研单位,以及一些外国公司,对全国30多个含煤区进行了勘探、开发和技术试验,在沁水盆地、鄂尔多斯盆地东缘韩城、大宁—吉县、柳林—兴县地区、安徽淮北煤田、辽宁阜新煤田等试验井都获得了较高的产气量。截至2010年底,全国已累计探明煤层气地质储量3311亿m3,并针对不同煤阶的煤层气特点,掌握了实验室分析化验和地质评价技术,直井/丛式井钻井完井、多分支水平井钻井技术,空气/泡沫钻井及水平井注气保压欠平衡储层保护技术,注入/压降试井技术,压裂增产和排采等技术系列,在沁水盆地南部、鄂尔多斯盆地东缘、宁武盆地南部、阜新煤田、铁法煤田、淮南淮北等地分别获得了具有经济价值的稳定气流,为规模开发准备了可靠的资源、技术条件。

近年国内天然气市场的快速发展,天然气基础管网逐步完善,煤层气开发迎来前所未有的机遇。特别是2007年政府出台了煤层气开发补贴政策,极大地调动了相关企业投资煤层气产业的积极性,促进了煤层气产业的快速发展,近年全国煤层气开发井由不足百口增加到5240余口(含水平井约100口),建成煤层气产能约30亿m3/年,年产气量超过15亿m3(图1),形成沁南、鄂东2大煤层气区为重点的产业格局。预测到“十二五”期间,全国地面钻井开发的煤层气产量可以达到100亿m3以上。

我国煤层气发展,主要经历了四个发展阶段(图2)。

图1 中国历年煤层气开发井数与产量图

图2 中国煤层气发展阶段划分

80年代前期评价阶段:在全国30多个煤层气目标区开展了前期地质评价研究;

1992~2000年勘探选区阶段:在江西丰城、湖南冷水江、山西柳林、晋城、河北唐山、峰峰、河南焦作、陕西韩城等地钻探煤层气井,柳林、晋城、阜新开展小井组试验;

2000~2005年开发试验阶段:在山西沁水、陕西韩城、辽宁阜新开展了开发先导试验工作;

2006年至今规模开发阶段:沁水煤层气田、鄂东煤层气田韩城区块、柳林区块、辽宁阜新、铁法等地煤层气地面开发初步形成规模并进入商业开发阶段,特别是2007年国家出台采政补贴政策,每生产1方煤层气国家补贴0.2元,极大地调动了生产企业的积极性,纷纷加大投入,煤层气产业进入快速发展阶段。2010年全国煤层气产量达到15亿方。

2 煤层气开发技术现状

在多年的勘探开发实践中,针对我国煤层气地质特点,逐步探索出适合我国配套工艺技术,如钻井完井、地面建设、集输处理等,形成了以中国石油、中联煤层气、晋煤集团等大型国有煤业集团、有实力的大型国际能源公司为代表的煤层气开发实体,以及煤层气钻井完井、地面建设、压缩运输等煤层气技术服务队伍,总体已经具备1000m以浅煤层气资源开发和产业化发展的条件。

不同演化程度的煤层煤岩性质不同,主要表现在煤岩的压实程度、机械强度、吸附能力等方面,其含气性、渗透性、井壁稳定性有很大差别(王一兵等,2006),因此不同煤阶的煤层气资源要求采用相应的技术手段来开发。经过多年的探索与发展,国内已初步形成针对不同地质条件和煤岩演化程度的煤层气开发钻井完井、压裂改造、排采技术系列。

2.1 钻井完井技术

2.1.1 中低煤阶高渗区空气钻井裸眼/洞穴完井开采煤层气技术

国内低煤阶区煤层渗透率一般大于10mD,中煤阶高渗区煤层渗透率也能大于5mD,对于此类高渗煤层的煤层气开采,一般不需压裂改造(低煤阶煤层机械强度低,压裂易形成大量煤粉堵塞割理),可对煤层段裸眼下筛管完井或采用洞穴完井方式,根据煤层在应力发生变化时易坍塌的特点造洞穴,扩大煤层裸露面积,提高单井产量;钻井施工时采用空气/泡沫钻井,既可提高钻速,又可有效减小煤层污染。

裸眼洞穴完井在国外如美国圣胡安盆地、粉河盆地的一些煤层气田开发中应用取得了良好效果(赵庆波等,1997,1999),特别是在高渗、超压的煤层气田开发中得到很好的应用效果。

常采用的井身结构有两种:

(1)造洞穴后不下套管,适用于稳定性较好的煤储层,是目前普遍采用的井身结构;

(2)造洞穴后下入筛管,可适用于稳定性较差的储层。

这一技术在国内鄂尔多斯盆地东缘中煤阶、湖南冷水江、新疆准噶尔南部进行试验,效果都不理想,需要进一步探索、完善。

2.1.2 中高煤阶中渗区大井组直井压裂开采煤层气技术

中高煤阶中渗区煤层渗透率一般0.5~5mD,采用套管射孔加砂压裂提高单井产量效果最明显。其技术关键在于钻大井组压裂后长期、连续抽排,实现大面积降压后,煤层吸附的甲烷气大量解吸而产气。这一技术在国内应用最广泛,技术最成熟。沁水盆地南部、鄂尔多斯东缘韩城、三交、柳林地区,辽宁阜新含煤区刘家区块等大多数深度小于1000m的煤层气井采用这一技术效果好,多数井获得了单井日产2000~10000m3/d的稳定气流,数百口井已稳产5~10年。

2.1.3 中高煤阶低渗区多分支水平井开采煤层气技术

该技术主要适用于机械强度高、井壁稳定的中高煤阶含煤区,通过钻多分支井增加煤层裸露面积,沟通天然割理、裂隙,提高单井产量和采收率,效果相当显著。同时,对于低渗(<0.5mD)薄煤层(<2m)地区,也是解决单井产量低、经济效益差的主要技术手段。

煤层气多分支水平井是指在一个或两个主水平井眼旁侧再侧钻出多个分支井眼作为泄气通道,分支井筒能够穿越更多的煤层割理裂缝系统,最大限度地沟通裂缝通道,增加泄气面积和气流的渗透率,使更多的甲烷气进入主流道,提高单井产气量。多分支水平井集钻井、完井和增产措施于一体(王一兵等,2006),是开发煤层气的主要手段之一。该技术具有三大技术优势:一是可以提高单井产量,约为直井的6~10倍,同时减少钻前工程、占地面积、设备搬安、钻井工作量和钻井液用量,节约套管和地面管线及气田管理和操作成本,从而提高开发综合效益;二是可以加快采气速度,提高采收率。用直井需要15~20年才能采出可采储量的80%,但用分支水平井仅需5~8年可采出70%~80%(李五忠等,2006),而且可以在很大程度上提高煤层气的采收率;三是多分支水平井的水平井眼不下套管,不压裂,避免压裂对煤层顶底板造成伤害,便于后续的采煤,是先采气后采煤的最佳配套技术。

目前我国在沁水盆地、鄂尔多斯盆地东缘、宁武盆地等煤层埋深300~800m的地区已完成多分支水平井100余口,沁水盆地南部单井日产量达到0.8万~5.5万m3,最高日产可达到10万m3,比直井压裂方法单井产量提高4~10倍。

2.2 储层保护技术

2.2.1 煤层气空气钻井技术

主要有空气钻井和泡沫钻井技术,主要优点是可实现欠平衡钻井,煤层损害小、钻速快、钻井周期短,综合钻井成本低。但空气/泡沫钻井也存在局限性,并不是任何地层都适用。由于空气/泡沫不能携带保持井眼稳定的添加剂,所以不能直接用空气钻穿不稳定地层。当钻遇含水层时,岩屑及更细的粉尘会变为段塞。由于液体在环空中出现,会润湿水敏性页岩,这会导致井塌而卡钻。而且湿岩屑会粘附在一起,在钻杆外壁上形成泥饼环,不能被空气从环空中带上来,当填充环空时,阻止了空气流动并产生卡钻。而且随着这些间歇的空气大段塞沿着井眼向上运移,它们会堵塞地面设备并且对井壁产生不稳定性效应。因此,空气钻井的关键在于保持井壁的稳定性。

2.2.2 水平井注气保压欠平衡保护技术

多分支水平井主井眼与洞穴井连通后,在水平井眼钻进过程中,在洞穴直井下入油管,洞穴之上下入封隔器,然后通过油管向洞穴直井注气,从水平井环空排气的钻井液充气方式,保持水平井眼环空压力,保证井眼稳定性(图3)。

图3 欠平衡钻井剖面示意图

空气压缩机将空气从直井注入,压缩空气、煤屑与清水钻井液在高速上返过程中充分混合,形成气、液、固相三相环空流动。原则上返出混合流体经旋转头侧流口进入液气分离器进行分离,混合液流从液体出口流入振动筛,气体夹杂煤粉从气流管线进入燃烧管线排放。在燃烧管线出口处,有大排量风机,将排出的气体尽快吹散。

如果三相分离器分离返出混合流体不明显,液体为雾状水滴时将分离器液流管线关闭,从分离器底部沉砂口进行煤屑和废水的收集和处理,气体夹杂煤粉从气体管线进入燃烧管线排放。如果分离器处理能力有限或燃烧管线堵塞,可临时使用节流管线应急排放混合物。在施工过程中要求地面管线畅通,各种阀门灵活可靠。

2.3 煤层气井水力压裂工艺技术

2.3.1 针对煤储层特征的压裂液

压裂液是煤层水力压裂改造的关键性环节,其主要作用是在目的层张开裂缝并沿裂缝输送支撑剂,因此着重考虑流体的粘度性质,不仅在裂缝的起裂时,具有较高的粘度,而且在压裂流体返排时具快速降低的性能。然而,成功的水力压裂改造技术还要求流体具有其他的性质。除了在裂缝中具有合适的粘度外,在泵送时还应具有低的摩擦阻力,能很好地控制流体滤失,快速破胶,施工结束后迅速返排出来等性能,同时应在经济上可行。

压裂液选择的基本依据是:对煤层气藏的适应性强,减少压裂液对储层的伤害;满足压裂工艺的要求,达到尽可能高的支撑裂缝导流能力。根据目前煤层气井储层的特点,压裂液研究应着重考虑以下几个方面:

储层温度25~50℃,井深300~1000m,属低温浅井范畴。因此,要求压裂液易于低温破胶返排,满足低温压裂液体系的要求,并且也考虑压裂液的降摩阻问题;煤层气属于低孔隙度、低渗特低渗透率储层,要求压裂液具有好的助排能力,并且压裂液彻底破胶;储层粘土矿物含量小,水敏弱,水化膨胀不是压裂液的主要问题,但储层低渗、低孔、压裂液的破胶返排、降低压裂液的潜在二次伤害是主要问题;要求压裂液滤失低,提高压裂液效率。

为了满足煤层压裂大排量、高砂比的施工要求,压裂液在一定温度下要具有良好的耐温、耐剪切性能,以满足造缝和携砂的要求;同时提高压裂液效率,控制滤失量。考虑较低的摩阻压力损耗,要求压裂液具有合适的交联时间,以保证尽可能低的施工泵压和较大的施工排量;采用适当的破胶剂类型及施工方案,在不影响压裂液造缝和携砂能力的条件下,满足压后快速破胶返排的需要,以降低压裂液对储层和支撑裂缝的伤害;要求压裂液具有较低的表面张力,破乳性能好,有利于压裂液返排;压裂液在现场应具有可操作性强、使用简便、经济有效、施工安全、满足环保等要求。

2.3.2 煤层压裂方案优化

针对一个区块的压裂方案,优化研究的总体思路是:在目标区块压裂地质特点分析的基础上,针对该区块主要的地质特点进行各工艺参数的优化研究。首先针对目标区块的物性特征确定优化的缝长和导流能力,然后逐一优化各施工参数,包括排量、规模、砂比、前置液百分数等,并且研究提出一系列协助实现优化缝长和导流能力,并保证支撑剖面尽可能实现最优的配套技术措施。

压裂施工参数的优化是指以优化缝长和导流能力为目标函数,通过三维压裂分析与设计软件,优化压裂施工参数。

前置液量决定了在支撑剂达到端部前可以获得多少裂缝的穿透深度。合理的前置液量是优化设计的基础和保证施工成功的前提。前置液用量的设计目标有两个:一是造出足够的缝长,二是造出足够宽度的裂缝,保证支撑剂能够进入,并保证足够的支撑宽度,满足地层对导流能力的需求。

排量的优化对压裂设计至关重要。研究试验发现,变排量施工可以对实现预期的缝长和裂缝高度有很好的控制。另一个重要作用是抑制多裂缝的产生,减少近井摩阻,有最新文献资料表明,通过先进的裂缝实时监测工具的反应,当排量超过一定值时,多裂缝的条数与排量呈正比关系。煤层易产生多裂缝的储层尤其应该尝试采取该项技术。

加砂规模优化包括平均砂液比的优化和加砂程序优化。平均砂液比的优化从施工安全角度,即从滤失系数和近井筒摩阻两个方面考虑,借鉴国内外施工经验,在煤层可能的滤失系数范围内,平均砂比20%~25%施工风险低。加砂程序优化必须将压裂设计研究中所有考虑因素和技术细节充分地体现出来。第一段砂液量的设计至关重要。如起步砂液比过高(或混砂车砂液比计量有误差),因开始加砂时可能造缝宽度不足,或起步砂液量过早滤失脱砂,会造成早期砂堵或中后期砂堵的后果;反之,如起步砂液比过低,可能造成停泵后第一批支撑剂还未脱砂,使停泵后裂缝仍有继续延伸的可能,使裂缝的支撑剖面更不合理。同时,滤失伤害也会增大。因此,起步砂液比的设计很重要。而从施工安全角度考虑,一般的做法是让第一段支撑剂进入裂缝后先观察一段时间,如压力无异常情况,再考虑提高阶段砂液比。

2.4 煤层气井抽排采气技术

煤层气以吸附状态为主,煤层气的产出机理主要包括脱附、扩散、渗流三个阶段(赵庆波等,2001),煤层气井产气需要解决的关键问题是:

(1)降低煤层压力至临界解吸压力以下;

(2)保持煤层水力裂缝及天然割理系统内不至于压力下降过快、过低而致使其渗透率急剧下降;

(3)有一定长的降压时间。

因此,煤层气采气工程应结合不同煤岩特性和室内研究工作,合理确定排采设备,控制动态参数,发挥煤层产气能力,同时在排采中要控制煤粉产生,减少煤储层应力敏感性对渗透性的不利影响。

煤层气井开采中煤粉迁移是普遍存在的现象。为了减少煤粉迁移对排采的影响,排采初期应保持液面缓慢稳定下降,生产阶段应避免液面的突然升降和井底压力激动,控制煤粉爆发,使之均匀产出并保持流动状态,防止堵塞煤层渗流通道和排采管柱。

煤层具有较强的塑性变形能力,应力敏感性强,在强抽排条件下会引起渗透性下降。为了促使煤层气井的高效排采(李安启等,1999),应保证煤层内流体压力持续稳定下降,避免由于下降过快导致煤层割理和裂缝闭合引起煤层渗透性的急剧下降。不同煤层具不同的敏感性,需通过实验和模拟确定最佳的降液速率。如:数值模拟确定晋试7井解吸压力以上每天降液速度不超过30m,解吸压力以下每天降液速度不超过10m;井底流压不低于1MPa。一般控制降液速度每天不超过10m,越接近煤层,降液速度越慢,当液面降至煤层以上20~30m时,稳定液面排采,进入稳定产气阶段后根据实际情况再适当降低液面深度。

3 煤层气开发技术发展趋势

与美国、加拿大、澳大利亚等煤层气工业发展较快的国家相比,我国煤层气地质条件复杂,主要表现在成煤期早、成煤期多,大部分煤田都经历多期次构造运动,煤层生气、运移、保存和成藏规律都很复杂。多年的勘探开发试验证实,煤层气富集区分布、高渗区分布都具有很强的不均一性,多数煤层气富集区渗透率都很低,导致大多数探井试采效果差,勘探成功率低。针对国内煤层气特点,提高我国煤层气开采效率的煤层气开发技术研究应包括以下几个方向。

3.1 高丰度煤层气富集区地质评价技术

高丰度煤层气富集区预测一般是通过地质学、沉积学、构造动力学、地球物理学、地下水动力学、地球化学等多学科联合研究,结合地震处理与解释方法,寻找煤层发育、盖层稳定、成煤期、生气期与构造运动期次相匹配的适合煤层气聚集的煤层气富集区。随着各地区勘探程度和地质认识程度的提高,一些开发区块或即将进入开发的区块,通过二维、三维地震储层反演与属性提取方法,在煤层气富集区预测孔隙、裂缝发育的高渗区,优化开发井网和井位部署,可有效指导煤层气高效开发。

3.2 提高煤层气开采效率的技术基础研究

以高丰度煤层气富集区为主要研究对象,以煤层气富集区形成机理和分布规律、开采过程中煤层气储层变化、流体相态转换、渗流和理论相应为重点研究内容,通过化学动力学、渗流力学等多学科联合与交叉研究,宏观研究与微观研究相结合,开展系统的野外工作、测试分析和理论研究。以煤层气井底压力响应为主要研究对象,利用多井试井技术和数值模拟技术,从静态和动态两个方面开展煤层气开发井间干扰机理与开发方式优选研究。研究适合我国地质条件的提高煤层气开采效率的储层改造基础理论,将有效指导煤层气开发技术的进步。

3.3 煤层气低成本高效钻井技术研究

针对当前300~1000m深度为主的煤层气资源,开展空气钻井技术攻关,发展车载轻型空气钻机。采用岩心实验、理论分析与生产动态分析相结合的方法,总结以往煤层气钻井设计方法和施工工艺,跟踪国内外多分支水平井、U型井、小井眼短半径水力喷射钻井、连续油管钻井等先进钻井技术,分析增产效果,优选适用技术。同时,还要考虑超过1000m深度的煤层气资源的开发技术。

3.4 煤层高效改造技术研究

通过煤层及顶底板力学实验与压裂液配伍性实验数据,分析煤层伤害的主要机理,研发出适合不同地质条件下煤层压裂的新型压裂液体系。结合典型含煤盆地煤层的地质特点,探索适合煤层气压裂改造的工艺技术。

参考文献

李安启,路勇.1999.中国煤层气勘探开发现状及问题剖析.天然气勘探与开发,22(3):40~43

李五忠,王一兵,田文广等.2006.沁水盆地南部煤层气可采性评价及有利区块优选.天然气,3(5):62~64

王一兵,孙景民,鲜保安.2006.沁水煤层气田开发可行性研究.天然气,2(1):50~53

王一兵,田文广,李五忠等.2006.我国煤层气选区评价标准探讨.地质通报,25(9~10):1104~1107

赵庆波.1999.煤层气地质与勘探技术[M].北京:石油工业出版社

赵庆波等.1997.煤层气勘探开发技术.北京:石油工业出版社

赵庆波等.2001.中国煤层气勘探.北京:石油丁业出版社



中国煤层气勘探开发现状与发展前景
答:1. 中国煤层气资源分布情况,主要分布在8个盆地,资源量28万亿立方米。2. 中国煤层气勘探开发现状,已形成三大煤层气企业,2010年探明储量29万亿立方米,年产量15亿立方米。沁水盆地是开发热点。3. 中国政府出台了价格优惠、税收优惠等政策鼓励煤层气发展。技术上取得一定进展,但整体水平仍需提高。4. 煤层...

中国煤层气储量、产量、标准及开发分析,煤层气产量逐渐上升「图」_百...
答:为了推动产业发展,国家不断优化政策支持,补贴措施和行业标准体系逐步完善。截至目前,我国已发布87项煤层气标准,涉及基础、方法、管理与产品等多个类别,为行业健康发展提供强有力的技术支撑。面对煤层气开发,建议我们聚焦地质研究,深化基础理论,通过精细的地质勘查和分析,提高煤层气开发的精准度。科技创...

中国煤层气勘探开发现状与发展前景
答:4项工程技术包括:连续油管钻井、小型氮气储层改造技术,短半径钻井和U形水平井技术,注氮 气、二氧化碳置换煤层气增产技术,采煤采气一体化技术。 2 中国煤层气产业现状 2.1 勘探开发现状 受美国、加拿大、澳大利亚等国家煤层气快速发展的影响,加之国家出台一系列优惠政策,中国煤 层气开发规模和企业迅速发展,已形成中国石...

中国煤层气产业发展现状与技术对策
答:如钻井完井、地面建设、集输处理等,形成了以中国石油、中联煤层气、晋煤集团等大型国有煤业集团、有实力的大型国际能源公司为代表的煤层气开发实体,以及煤层气钻井完井、地面建设、压缩运输等煤层气技术服务队伍,总体已经具备1000m以浅煤层气资源开发和产业化发展的条件。

我国煤层气产业发展报告
答:(中联煤层气有限责任公司 中国煤炭学会煤层气专业委员会 北京 100011) 摘要:分析了煤层气勘探、开发、利用现状,梳理了煤层气勘探开发技术进展,对我国煤层气产业发展进行了基本评估。认为当前我国煤层气勘探快速推进,探明储量显著增长;煤层气产能规模扩大,产销量同步上升;煤层气产业初步形成,煤层气成为天然气的最现实的补充...

我国煤层气开发利用现状、产业发展机遇与前景
答:作者简介:冯三利,1956年生,男,高级工程师,现任中联煤层气有限责任公司副总经理,地址:北京市安外大街甲88号,邮编:100011。 摘要 文章从煤层气资源、技术及政策等方面介绍了我国煤层气开发利用现状,阐明了我国煤层气勘探开发存在的问题,并详细分析了当前促进我国煤层气快速发展的机遇,最后对我国煤层气开发利用的前景进行...

中国煤层气利用现状
答:中国目前煤层气利用尚处于起步阶段,利用量小,利用率低,没有形成一个规模。煤层气的利用主要集中在瓦斯抽采较高的国有重点煤矿区,尤其是45户安全重点监控企业。瓦斯利用好的单位有抚顺、阳泉、松藻、晋城以及芙蓉。现有煤层气利用以民用和工业燃气为主,已达到80%,煤层气发电则是主导发展方向,煤层气...

中国非常规能源未来的发展现状,主要是煤层气、页岩气等方向。谢谢!_百 ...
答:从国家对煤层气、页岩气、页岩油和低渗油等资源的相关政策可以看出:一、我国非常规能源目前发展遇到瓶颈,亟需技术的改进。我国在非常规能源能源方面的技术一般都是起步较晚,多是借鉴国外先进技术等一些软性技术,但是关键技术目前还是没有学到,这是因为现在在我国的技术服务公司都是外企,核心技术保密性...

加快中国煤层气产业发展的建议
答:一、加强煤层气产业发展状况调研 煤层气产业经过几十年发展,各方面均取得了一定程度的进展,但截至2009年底,煤层气地面年产量不足10×108m3,抽放利用率很低,制约煤层气产业发展的因素包括地质理论、技术方法、体制机制等多方面问题,政府应组织多部门进行调研分析和研究,提出解决问题的根本方法。二、...

中国地面煤层气开发现状怎样??中国煤层气有哪些重点企业?
答:全国95%的煤层气资源分布在晋陕内蒙古、新疆、冀豫皖和云贵川渝等四个含气区,其中晋陕内蒙古含气区煤层气资源量最大,为17.25万亿立方米,占全国煤层气总资源量的50%左右。2006年,中国将煤层气开发列入了“十一五”能源发展规划,并制定了具体的实施措施,煤层气产业化发展迎来了利好的发展契机。2007...