γ射线探伤

作者&投稿:李飘 (若有异议请与网页底部的电邮联系)
伽马射线探伤原理~

原理:当强度均匀的射线束透照射物体时,如果物体局部区域存在缺陷或结构存在差异,它将改变物体对射线的衰减,使得不同部位透射射线强度不同,这样,采用一定的检测器检测透射射线强度,就可以判断物体内部的缺陷和物质分布等。
γ射线有很强的穿透性,射线探伤就是利用γ射线穿透性和直线性来探伤的方法。γ射线虽然不会像可见光那样凭肉眼就能直接察知,但它可使照相底片感光,也可用特殊的接收器来接收。
当γ射线穿过(照射)物质时,该物质的密度越大,射线强度减弱得越多,即射线能穿透过该物质的强度就越小。此时,若用照相底片接收,则底片的感光量就小;若用仪器来接收,获得的信号就弱。
用γ射线来照射待探伤的零部件时,若其内部有气孔、夹渣等缺陷,射线穿过有缺陷的路径比没有缺陷的路径所透过的物质密度要小得多,其强度就减弱得少些,即透过的强度就大些,若用底片接收,则感光量就大些,就可以从底片上反映出缺陷垂直于射线方向的平面投影。
γ射线探伤对气孔、夹渣、未焊透等体积型缺陷最敏感。即γ射线探伤适宜用于体积型缺陷探伤,而不适宜面积型缺陷探伤。

扩展资料:
危害
γ射线具有极强的穿透本领。
人体受到γ射线照射时,γ射线可以进入到人体的内部,并与体内细胞发生电离作用,电离产生的离子能侵蚀复杂的有机分子,如蛋白质、核酸和酶,它们都是构成活细胞组织的主要成分,一旦它们遭到破坏,就会导致人体内的正常化学过程受到干扰,严重的可以使细胞死亡。
人体受到γ射线照射时,γ射线可以进入到人体的内部,并与体内细胞发生电离作用,电离产生的离子能侵蚀复杂的有机分子,如蛋白质、核酸和酶,它们都是构成活细胞组织的主要成分,一旦它们遭到破坏,就会导致人体内的正常化学过程受到干扰,严重的可以使细胞死亡。

参考资料来源:百度百科——射线探伤
参考资料来源:百度百科——γ射线

高能量的γ射线对人体的破坏作用相当大,当人体受到γ射线的辐射剂量达到200-600雷姆时,人体造血器官如骨髓将遭到损坏,白血球严重地减少,内出血,头发脱落,在两个月内死亡的概率为0-80%;
当辐射剂量为600-1000雷姆时,在两个月内死亡的概率为80-100%;当辐射剂量为1000-1500雷姆时,人体肠胃系统将遭破坏,发生腹泻,发烧,内分泌失调,在两周内死亡概率几乎为100%;
当辐射剂量为5000雷姆以上时,可导致中枢神经系统受到破坏,发生痉挛,震颤,失调,嗜眠,在两天内死亡的概率为100%。
要去当地疾控中心做染色体分析,受到伽马射线照射后,如果造成损失,首先在染色体上表现出来。


扩展资料
γ射线,又称γ粒子流,是原子核能级跃迁退激时释放出的射线,是波长短于0.01埃的电磁波。
γ射线有很强的穿透力,工业中可用来探伤或流水线的自动控制。γ射线对细胞有杀伤力,医疗上用来治疗肿瘤。
γ射线首先由法国科学家P.V.维拉德发现,是继α、β射线后发现的第三种原子核射线。
参考资料百度百科 伽马射线

你好好的研究研究这个防护标准,心里有个数就OK了

《工业γ射线探伤卫生防护标准》
Radiological protection standards for industrial gamma
defect detecting
GBZ132-2002
前 言
本标准第4~8章和附录A,附录B为强制性的,其余为推荐性的.
根据《中华人民共和国职业病防治法》制定本标准.原标准GB18465-2001与本标准不一致的,以本标准为准.
本标准编制过程中主要参考GB14058,DIN54115第1部分及其附件和DIN54115第5部分的内容,并结合我国的实际情况而编制.
本标准的附录A,附录B是规范性附录.
本标准由中华人民共和国卫生部提出并归口.
本标准起草单位:山东省医学科学院,放射医学研究所.
本标准主要起草人:邓大平,侯金鹏,朱建国,温继惠,汪春亮.
本标准由中华人民共和国卫生部负责解释.
1 范围
本标准规定了γ射线探伤机防护性能及其使用过程中的放射防护和有关监测要求.
本标准适用于应用γ射线探伤机进行金属构件内部结构的无损检测实践.
2 规范性引用文件
下列文件中的条款通过本标准的引用而成为本标准的条款.凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本.凡不注日期的引用文件,其最新版本适用于本标准.
GB4075 密封放射源分级
GB11806 放射性物质安全运输规定
GB/T14058 γ射线探伤机
3 术语和定义
下列术语和定义适用于本标准.
3.1 移动式探伤 mobile defect detecting
在室外,生产车间或安装现场用手提式或移动式γ射线探伤机进行探伤的工作过程.
3.2 固定式探伤 stationary defect detecting
在专用γ射线探伤室内用固定安装的或可有限移动的探伤机进行γ射线探伤的工作过程.
3.3 γ射线探伤室 gamma defect detecting room
放置γ射线探伤机和被检物体进行γ射线探伤并具有一定屏蔽作用的专用照射室.
4 γ射线探伤机的放射防护性能要求
4.1 源容器应符合GB/T14058中第5.3条的试验要求,其周围的空气比释动能率不超过表1中的数值.
表1 源容器周围空气比释动能率控制值(mGy·h-1)
探伤机类别
距容器外表面
容器外表面

50mm
1m

手提式
2
0.5
0.02

移动式
2
1
0.05

固定式
2
1
0.10

4.2 使用贫化铀做源容器屏蔽材料时,其对β射线的防护应符合GB/T14058中第5.3.1条的要求.
4.3 每台γ射线探伤机的源容器及其中的密封源必须有符合GB/T14058中第8.1.1,8.1.2条要求的标志.
4.4 γ射线探伤机的安全锁,联锁装置,源的位置指示器,系统故障时的安全装置,防止违章操作装置等安全装置的性能按GB/T14085中第5.4条要求.
4.5 源托的安全性应符合GB/T14085中第5.5条要求.
4.6 根据不同需要,放射源传输装置的长度应尽可能减短,每次照相后,放射源必须能立即返回源容器并进入关闭状态.
4.7 产品说明书应注明型号,规格和主要技术指标及设备保养,贮存,运输方法,还应包括:所用放射源的种类,特性,源容器外表面泄露剂量水平,安全措施,自动关闭功能及常见事故的处理方法等内容.
5 固定式探伤的放射防护要求
5.1 γ射线探伤室的建筑(包括辐射防护墙,门,窗,辐射防护迷路)应充分考虑直射,散射和屏蔽物材料和结构等各种因素并按本标准附录A(规范性附录)的要求确定防护厚度.
5.2 辐射防护墙外5cm处剂量率应小于2.5μGy·h-1.
5.3 辐射防护门入口处必须有固定的放射性危险标志,照射期间有醒目的"禁止入内"的警示标识;探伤室入口处及被探物件出入口处必须设置声光报警装置,该装置在γ射线探伤机工作时应自动接通,并能在有人通过时自动将放射源收回源容器;辐射防护门的防护性能应与同侧墙相同,其外5cm处的剂量率应小于2.5μGy·h-1,并安装门-机联锁装置和工作指示灯;机房内适当位置安装固定式剂量仪.
6 移动式探伤的放射防护要求
6.1 进行探伤作业前,必须先将工作场所划分为控制区和监督区.
6.2 控制区边界外空气比释动能率应低于40μGy·h-1.在其边界必须悬挂清晰可见的"禁止进入放射性工作场所"警示标识.未经许可人员不得进入该范围,可采用绳索,链条和类似的方法或安排监督人员实施人工管理.控制区范围的计算方法见附录B(规范性附录).
6.3 监督区位于控制区外,允许有关人员在此区活动,培训人员或探访者也可进入该区域.其边界剂量应不大于2.5μGy·h-1,边界处应有"当心,电离辐射"警示标识,公众不得进入该区域.
6.4 进行探伤作业时,必须考虑γ射线探伤机和被检物体的距离,照射方向,时间和屏蔽条件,以保证作业人员的受照剂量低于年剂量限值,并应达到可以合理做到的尽可能低的水平.
7 放射源的安全要求
7.1 密封源选用的级别按GB4075选定,无保护的源为43515级,装置里的源为43313级.
7.2 放射源的更换应得到当地放射卫生防护部门批准并在防护专业人员的监督下进行,在完全屏蔽的装置里,采用远距离的抓取机和支撑装置进行.
密封源从运输容器中转装入源容器或从源容器转装入运输容器必须采用便于更换操作的辅助设备和具有足够屏蔽性能的装置.操作人员在一次更换过程中所接受的当量剂量不应超过0.5mSv.
7.3 放射源托的更换应由使用单位主管部门及当地放射卫生监督部门批准.如果装载和卸载带有放射源和源托的源容器是通过推进器进行的,就必须利用带足够屏蔽的适当的换装容器.
7.4 废弃的放射源按国家有关规定处理或处置,并有详细的记录归档保存.
7.5 放射源的运输按GB11806有关规定执行.
7.6 含源源容器或放射源应在专用放射源库内贮存.
7.7 在当地放射卫生防护主管部门指导下,使用单位应制定出合适的应急计划并作好相应的应急准备,计划内容包括:工作程序,组织机构,人员培训,应急计划演习,应急设施等.
7.8 操作现场必须配备适当的应急防护设备,如:足够屏蔽厚度的的防护掩体,隧道式屏蔽块,柄长不短于1.5米的夹钳,适当长度的金属线,水池,沙袋等.
8 放射防护监测
8.1 作业人员的个人剂量监测
8.1.1 γ射线探伤作业人员必须进行常规个人剂量监测,并建立个人剂量档案和健康管理档案,其个人年剂量限值如下:
a)连续5年内年平均有效剂量20mSv;
b)任何单一年份内有效剂量50mSv;
c)一年中眼晶体所受的当量剂量150mSv;和
d)一年中四肢(手和脚)或皮肤所受的当量剂量500mSv.
8.1.2 对作业人员还应进行意外事故的剂量监测,并有详细的记录.
8.2 γ射线探伤机防护性能监测
8.2.1 生产γ射线探伤机,应按GB/T14058的要求进行型式检验和出厂检验.
8.2.2 由使用单位所在地放射卫生技术服务机构按本标准第四章的放射防护性能要求对γ射线探伤机进行验收检测,其中本标准第4.1条要求的屏蔽效果试验按GB/T14058中第6.1条进行,合格后方能使用.
8.2.3 使用单位应经常对安全装置的性能进行检测,放射卫生技术服务机构每年进行一次.
8.2.4 探伤机被移动后,兼职防护人员必须用相应仪器进行安全装置的性能检测.
8.2.5 防护主管部门每年对密封放射源进行一次泄漏检验.
8.3 作业场所的防护监测
8.3.1 固定式探伤作业场所的防护监测
8.3.1.1 探伤室启用前必须进行验收检测,合格后方能使用.
8.3.1.2 每天工作前,探伤作业人员应检查安全装置,联锁装置的性能及警告信号,标志的状态.检查探伤室内是否有人员逗留.
8.3.1.3 每次探伤作业结束后,操作人员应用可靠的辐射仪器核查放射源是否回到安全位置.源容器出入源库时应进行监测并有详细记录.
8.3.1.4 由使用单位所在地放射卫生技术服务机构每年进行一次操作场所及探伤室临近区域的辐射水平测量,并根据测量结果提出评价或改进意见.当放射源的活度增加时,应重新测量上述辐射水平,并根据测量结果做出合适的改进.
8.3.2 移动式探伤作业场所的放射防护监测
8.3.2.1 每次探伤作业前应按本标准第8.3.1.2条检查探伤机,并检查控制区,确保在放射源暴露前控制区内无任何人员.
8.3.2.2 作业场所启用时,应围绕控制区边界测量辐射水平,并按不超过40μGy·h-1的要求进行调整.
8.3.2.3 建立操作现场的辐射巡测制度,定期观察放射源的位置和状态.
8.3.2.4 探伤作业结束后应进行本标准第8.3.1.3条的工作.
附录A
(规范性附录)
防护层的确定
A.1 原 则
A.1.1 在确定防护层时必须考虑有用线束的方向.如有用线束的方向没有限制,所有方向的防护层按A.2进行确定.如有用线束仅处于有限的方向,则除此有限方向按A.2节确定防护层外,其余所有方向的泄漏辐射防护层按A.3节.
A.1.2 由不同的屏蔽材料构成的多层防护,其总衰减度等于各个防护层的衰减度之乘积.
A.2 防止有用辐射的防护层
A.2.1 按照公式(1)计算所要求的有用辐射的衰减度FN,
·…………………………………(A.1)
式中:KN为测到的或者按A.2.2节计算出的在有用辐射束里距离放射源为的a0(m)的比释动能率(mGy/h),a为距放射源的某一点的距离(m),KG为距放射源为a的最高允许比释动能率(mGy/h).
A.2.2 在距离为a0时,该点的最高比释动能率KN,可由放射源的预期最大放射性活度A(GBq)和比释动能常数TK(见表A.1),按公式(2)计算.
............(A.2)
表A.1 比释动能常数гK,(mGy·m2)/(h·GBq)
放射源
60Co
192Ir
гK
0.35
0.13
A.2.3 防止有用辐射束的防护层的厚度可从图A.1和图A.2中查得.通过在图A.1和图A.2中给出的质量厚度除以屏蔽材料的密度(g/cm3),就可以得出以cm为单位的防护层的厚度(详见A.2.4).
A.2.4 防护层的公式计算
防护层的厚度d(cm)也可使用表A.2中的线性衰减系数μ的值,按照公式(3)进行计算,严格用于图A.1和图A.2中曲线FN>10的线性范围.
..................(A.3)

A.2.5 辐射防护结构图上必须标明防止有用辐射束的全部防护墙的说明,包括墙厚,屏蔽材料名称及厚度.
A.3 防止泄漏辐射的防护层
防止源容器或屏蔽物的泄漏辐射的防护层,按照公式(4)计算所要求的衰减度FD:
.....................(A.4)
式中:KD为有用射束外,距放射源为a0的比释动能率(mGy/h).
a0为从放射源至防护地点的距离(m).
KG为距离放射源为a(m)时,该位置上最高允许的比释动能率(mGy/h).
表A.2 线性衰减系数
材料
线性衰减系数μ(cm-1)
60Co
192Ir

0.565
1.484
铅玻璃
0.231


0.3095
0.535
一般混凝土
0.0995
0.137
重晶石混凝土
0.1385
0.19

图A.1 60Co有用线束衰减度为FN,散射线衰减度为Fs,泄漏辐射衰减度为FD时不同材料的质量厚度

图A.2 192Ir有用线束衰减度为FN,散射线衰减度为Fs,泄漏辐射衰减度为FD时不同材料的质量厚度

附录B
(规范性附录)
控制区的确定
B.1 根据放射源的γ射线向各个方向辐射时的不同情况,应确定三类不同的控制区距离,如图B.1所示.

图B.1 应用屏蔽物的控制区(无比例)
aⅠ:辐射没有任何衰减时要求的控制区距离;
aⅡ:有用线束方向,经检测对象屏蔽后要求的控制区距离;
aⅢ:有用线束方向以外,经源容器或其他屏蔽物屏蔽后要求的控制
区距离.
B.2 对于移动探伤,控制区边界的当量剂量率为40μSv/h,可由如下评定各类控制区距离的大小:
aⅠ:系取自图B.2的控制区距离(m)
aⅡ和aⅢ:取自图B.2的控制区距离aⅠ(m),乘以表B.2中不同半减层数相对应的因子之积(可根据屏蔽物的厚度,除以表B.1中相应核素和屏蔽材料的半减层厚,求出其半衰减层数,进而从表B.2查出相对应的因子).
表B.1 不同材料半减层厚的近似值
屏蔽材料
不同放射源的半减层厚(HVL)(mm)

60Co
192Ir
169Yb
170Tm


70
50
27
20

混凝土
70
50
27


24
14
9
5


13
3
0.8
0.6


10
2.5

0.09


6
2.3

0.035

表B.2 用于控制区确定时在有衰减的辐射时aⅡ和aⅢ的因子
半减层数
因子
0.5
0.9
1
0.7
1.5
0.6
2
0.5
3
0.4
4
0.3
5
0.2
8
0.1
10
0.05
12
0.01
B.3 举例如下:
192Ir,放射性活度1.85×1012Bq,检测对象为结构钢,厚度28mm(2HVL),放射源屏蔽物(照射容器壁)为钨制,厚25mm(10HVL)
aⅠ: 图B.2的控制区aⅠ=78m
aⅡ: 图B.2的控制区值aⅠ乘以表B.2的因子
aⅡ=0.5×aⅠ=0.5×78=39m
aⅢ:图B.2的控制区值aⅠ乘以表B.2的因子
aⅢ=0.05×aⅠ=0.05×78=3.9m

图B.2 辐射没有任何衰减时应用不同活度γ放射源时的控制区距离aⅠ

常用的是用铅板来防护!铅板对放射线具有很好的反射效果!
控制室一般都有防护的措施,能达到对人体无伤害的程度!

一般没事,你们工作时不穿防辐射的工作装吗?集控室里的人都接触过γ射线,所以环境里多多少少都会有辐射的,但强度小。可时间长了也不好,你们新机组安装不会很久吧!
健康方面多多少少会有影响,但不能长时间的接触,即使量很少,后果有轻有重,轻者无碍,重者……
好运!

铅板是吸收而不是反射
r射线的穿透力比x射线还厉害 能穿透薄铅板的
γ射线探伤 用的都是功率及其微弱的涉嫌 另外 由于高穿透性和定向性 一般不会直接威胁的健康 但是长期处在这种环境之中 是否有害 要是具体情况定

一般在有在辐射环境下的工作 都有适当的补贴

另外 没有什么安全距离的说法 只有当量辐射量
一般补贴标准就是参照这个标准的

如果用10厘米厚的

γ射线探伤方法的特点有( )。
答:γ射线是由放射性同位素和放射性元素产生的。施工探伤都采用放射性同位素作为射线源。常用的同位素有钴 60、铯 137 和铱 192,探伤厚度分别为 200mm、120mm 和 100mm。γ射线的特点是设备轻便灵活,特别是施工现场更为方便,而且投资少,成本低。但其曝光时间长,灵敏度较低。在石油化工行业现场施工时...

使用γ射线探伤,即利用γ射线检查金属部件是否存在砂眼、裂痕等,这是...
答:使用γ射线探伤,即利用γ射线检查金属部件是否存在砂眼、裂痕等,这是利用了γ射线的贯穿本领强的特点;用α射线可以泄去化纤、纺织品上的有害静电,这是利用了α射线的电离本领大的特点;放射性物质发出的射线可以导致癌症,这是因为放射性物质发出的射线能使基因突变.故答案为:贯穿本领强;电离本领大...

γ射线探伤与X射线探伤相比,其主要特点是( )。
答:【答案】:A Y射线的特点是设备轻便灵活,特别是施工现场更为方便,而且投资少,成本低。但其曝光时间长,灵敏度较低,用超微粒软片铅箱增感进行透照时,灵敏度才达到2%。另外,Y射线对人体有危害作用,石油化工行业现场施工时常用。

伽马射线探伤原理
答:原理:当强度均匀的射线束透照射物体时,如果物体局部区域存在缺陷或结构存在差异,它将改变物体对射线的衰减,使得不同部位透射射线强度不同,这样,采用一定的检测器检测透射射线强度,就可以判断物体内部的缺陷和物质分布等。γ射线有很强的穿透性,射线探伤就是利用γ射线穿透性和直线性来探伤的方法。γ...

γ射线探伤的安全距离
答:伽马射线是波长小于0.1纳米的电磁波,是比X射线能量还高的一种辐射,它的能量非常高.但是大多数伽马射线会被地球的大气层阻挡,观测必须在地球之外进行.伽马源的探伤,安全距离是100米,如果是大剂量的话,安全距离是200米

射线探伤安全距离伽马射线的安全距离。
答:安全距离规定50米左右。γ,又称γ粒子流,是原子核能级跃迁蜕变时释放出的射线,是波长短于0.01埃的电磁波。γ射线有很强的穿透力,工业中可用来探伤或流水线的自动控制。γ射线对细胞有杀伤力,医疗上用来治疗肿瘤。

在工业探伤中,我老公被伽马射线照射了,会产生怎样的危害
答:高能量的γ射线对人体的破坏作用相当大,当人体受到γ射线的辐射剂量达到200-600雷姆时,人体造血器官如骨髓将遭到损坏,白血球严重地减少,内出血,头发脱落,在两个月内死亡的概率为0-80%;当辐射剂量为600-1000雷姆时,在两个月内死亡的概率为80-100%;当辐射剂量为1000-1500雷姆时,人体肠胃系统将遭...

伽马射线探伤辐射范围是多少?
答:伽马射线探伤辐射范围是50米。伽马射线危害:γ射线具有极强的穿透本领。人体受到γ射线照射时,γ射线可以进入到人体的内部,并与体内细胞发生电离作用,电离产生的离子能侵蚀复杂的有机分子,如蛋白质、核酸和酶,它们都是构成活细胞组织的主要成份,一旦它们遭到破坏,就会导致人体内的正常化学过程受到干扰...

与X射线探伤相比,γ射线探伤有哪些缺点?
答:(1)由于γ射线源每时每刻都在辐射射线,因此对设备的可靠性和防护方面的要求要高一些。(2)射线能量不可调节,无法按透照厚度选择能量。(3)射线强度随时间减弱,曝光时间有时较长。(4)固有不清晰度较大,对比度较小,在应用的大部分厚度范围,灵敏度低于X射线。

射线探伤的射线探伤(x、γ)方法介绍
答:工业上常用的射线探伤方法为X射线探伤和γ射线探伤。指使用电磁波对金属工件进行检测,同X线透视类似。射线穿过材料到达底片,会使底片均匀感光;如果遇到裂缝、洞孔以及夹渣等缺陷,一般将会在底片上显示出暗影区来。这种方法能检测出缺陷的大小和形状,还能测定材料的厚度。X 射线是在高真空状态下用高速...