(二)沁水盆地煤层气成藏条件分析

作者&投稿:张谢 (若有异议请与网页底部的电邮联系)
煤层气富集成藏条件~

煤层既是生气层,又是储集层,在煤化作用过程的各个阶段只要维持一定的地层压力就可以形成煤层气藏,但煤层气富集为具有开采价值的气藏则需要一些地质条件的共同作用,这些地质条件包括构造和成煤环境、生储性良好的煤层、上覆有效厚度、较高的地层压力、稳定封闭的水文地质条件等。下面分别论述这些地质条件对煤层气富集成藏所产生的影响。
(一)构造环境
聚煤期构造稳定、聚煤期后构造改造较弱是煤层气富集成藏的有利构造环境,如鄂尔多斯含气盆地和沁水含气盆地,是国内石炭—二叠纪煤层气富集成藏的最有利地区。这两个盆地的基底为形成最早的古板块,石炭—二叠纪聚煤期构造稳定,聚煤作用发育,沉积了一套海陆交互相含煤地层。煤层厚度较大,鄂尔多斯东缘山西组煤厚3~5m,太原组煤厚5~12m;沁水盆地山西组煤厚3~7m,太原组煤厚5~9m,煤层结构简单,分布范围遍及这两个盆地各处。聚煤期后构造改造较弱,燕山和喜山期构造运动在这两个盆地以抬升和轻微褶皱为主,断裂不发育,无推覆构造,煤体结构保存良好,煤层气藏含气性和渗透性较好,这两个盆地的含气量一般均在8m3/t以上,试井渗透率一般大于1m D。鄂尔多斯盆地东缘柳林杨家坪井组单井稳产气量约1 000~7 000m3/d,沁水盆地单井稳产气量1 800~3 000m3/d,已小型商业化生产。由此可见,有利的构造环境对煤层气富集成藏和产出有重要影响。
(二)成煤环境
聚煤环境控制着煤层的原始展布状态、宏观煤岩类型、显微煤岩组份和灰分含量等,并进而影响到煤层气的富集和产出特征。如厚而稳定的煤层有利于形成大型煤层气藏,而亮煤成分多,镜质组含量高,灰分含量低的光亮煤不仅有利于煤层气的吸附,而且有利于割理发育,使煤层具有较好的渗透性。因此,聚煤环境与煤层气藏地质特征关系密切。我国的成煤环境主要有滨海台地、海湾泻湖、三角洲、河流、冲积扇及扇三角洲前缘等环境。其中,海湾泻湖和三角洲环境有利于形成厚度大,分布范围广,灰分含量较低,镜质组含量较高的煤层,为煤层气富集的最有利聚煤环境。其次为河流及滨浅湖环境,这两类环境中形成的煤层镜质组含量低,分布不十分稳定,为其不利之处,但煤的灰分含量低,有时发育在一定范围内连续分布的巨厚煤层,因此为煤层气富集的较有利聚煤环境。滨海台地环境中形成的煤层镜质组含量虽很高,但煤层厚度薄。冲积扇及扇三角洲前缘环境常形成巨厚煤层,但煤层分布不稳定,分布范围有限,对煤层气富集来说,为两类较为不利的沉积环境。
(三)生气条件
煤作为煤层气的源岩,展布范围广、厚度大、热演化程度高的煤层是煤层气富集成藏最为有利的气源条件。沁水盆地南部山西组和太原组煤层厚度变化范围为8~12m,在深成变质作用的背景下叠加的岩浆热变质作用,使煤热演化程度大幅提高,Romax为1.9%~5.25%,以无烟煤为主,煤层的生气能力很强,达170m3/t以上,远大于煤层自身的吸附能力,生气条件十分有利,气源充足,为煤层气富集成藏奠定了雄厚的物质基础。
(四)储集条件
从煤层气藏的储集条件角度分析,有利煤层气富集成藏的内在储集条件是:煤层厚度及其稳定性和煤的热演化程度。煤层越厚、稳定性越好,越有利于煤层气的富集成藏。热演化程度越高,兰氏体积越大,煤层越倾向于吸附更多的气体。热变质作用是我国煤储层热演化程度升高的普遍地质原因,对大规模广范围煤层气藏的形成条件来说,接触变质作用一般远不如区域热变质作用更为有利,前者不仅影响范围局限,而且破坏煤层的连续性,而巨大的隐伏深成侵入体影响范围广,作用时间长,可以使煤储层的热演化程度在大范围内显著提高。研究表明沁水盆地南、北两个高变质区的形成,是晚侏罗—早白垩世深部区域岩浆侵入导致高地热作用的结果。这对改善沁水南部煤层的储集条件,形成沁水大型煤层气田起到了重要作用。
(五)煤层上覆有效地层厚度
煤层上覆有效地层厚度定义为:含煤盆地或地区对煤层含气性能起控制作用的煤层上覆地层厚度。简称上覆有效厚度。就华北多数地区(埋深<2 000m)来说,石炭、二叠纪煤层的上覆有效厚度是煤层到三叠纪末印支运动抬升作用所造成的区域性不整合面之间的地层厚度,鄂尔多斯盆地侏罗纪煤层的上覆有效厚度是煤层到晚期燕山运动抬升剥蚀作用所形成的区域不整合面的地层厚度。
上覆有效厚度对煤层气富集成藏的控制作用,表现为随上覆有效厚度增大,煤层的储集性能变好,在气源一定的前提下,储集的气量越多。如焦作恩村井田,山西组二,煤的煤级在整个井田无变化,为无烟煤,煤层甲烷含量等值线与上覆有效厚度等值线吻合(图3-11),显示了上覆有效厚度增加含气量增加的明显趋势,这种正相关关系在图3-12上看得更清楚。

图3-11 焦作恩村井田山西组二1煤甲烷含量与上覆有效厚度平面变化图

上覆有效厚度控制煤层含气性是由早期抬升剥蚀和后期沉降作用共同造成的。煤形成后的地壳抬升导致的风化剥蚀作用使抬升前的煤层上覆地层厚度变薄,原始地层压力降低,原始的吸附平衡状态打破,煤层气的解吸扩散作用发生,煤层原始含气量开始降低。这一含气量的降低过程一直持续到地壳相对稳定,风化剥蚀作用停止,地层压力保持不变,或地壳开始下沉,沉积物开始堆积,地层压力开始上升为止。此时,残留于煤层之上的地层厚度就是煤层上覆有效厚度。煤层含气量随上覆有效厚度增大而增大,而不是随埋深增加而增大。
(六)水文地质条件
水文地质对煤层气富集成藏有明显影响,地层压力是通过煤层中水分传导至煤层孔隙中的,是煤层气以吸附状态存在于煤层中的必要条件。弱径流—阻滞的水文地质环境有利于煤层气的保存,对煤层气的富集成藏有利,而活跃的水文地质环境不利于煤层气的保存,对煤层气的富集产生不利影响。图3-13是河东煤田三交试验区太原组水文等势面图,林家坪井组和碛口井组相距约4km,林家坪井组距其南部的位势异常带较近。由图3-14可见林家坪井组位于氯根异常带,由图3-15可见林家坪井组位于地下水流量最大的部位,这些资料说明,碛口井组和林家坪井组所处的水文地质环境不同,碛口井组的水文地质环境较稳定,封闭性较好,而林家坪井组水文地质环境的稳定性和封闭性较差,地下水和地表水交替强烈,使煤层气以水溶状态不断运移出去,导致含气量和含气饱和度降低。煤层气钻井实测含气量林家坪井组为每吨煤7.5~7.9m3,而碛口井组为12~15m3,前者比后者降低4~7m3,含气饱和度前者为54%~66%,后者为78%~84%。这一实例说明了封闭的水文地质条件对煤层气富集成藏有利。

图3-12 焦作恩村井田山西组二1煤甲烷含量与上覆有效厚度关系图


图3-13 河东煤田三交试验区太原组水文等势面图


图3-14 河东煤田三交试验区太原组氯离子含量图


图3-15 河东煤田三交试验区太原组地下水流量图

总之,煤层气的储集和保存与常规天然气有很大不同,造成两者在富集成藏条件上出现很大差异,深入了解和正确认识这些差异,有益于煤层气地质研究和勘探开发实践。

赵庆波 孙粉锦 李五忠 李贵中 孙 斌 王 勃 孙钦平 陈 刚 孔祥文
( 中国石油勘探开发研究院廊坊分院 廊坊 065007)
摘 要: 煤层气成藏模式可划分为自生自储吸附型、自生自储游离型、内生外储型; 煤层气成藏期可划分为早期成藏、后期构造改造成藏和开采中二次成藏,特别指出了开采中二次成藏的条件。利用沉积相分析厚煤层的层内微旋回,细划分出优质煤层富含气段; 进一步利用沉积相探索成煤母质类型及其对煤层气高产富集控制作用; 阐述了构造应力场及水动力对煤层气成藏的作用机理。总结了煤层气开采特征: 指出了煤层气井开采中的阻碍、畅通、欠饱和三个开采阶段,并认为欠饱和阶段可划分为多个阶梯状递减阶段; 由构造部位和层内非均质性的差异形成自给型、外输型和输入型三类开采特征。根据地质条件分析了二维地震 AVO、定向羽状水平井、超短半径水力喷射、U 型井、V 型井钻井技术的适用性及国内应用效果。
关键词: 煤层气 成藏模式 成煤母质 高产富集 开采特征; 适用技术
作者简介: 赵庆波,1950 年生,教授级高级工程师,中国石油天然气集团公司高级技术专家,中国地质大学( 武汉) 兼职教授; 中国石油学会煤层气学组副组长; 主要从事煤层气勘探开发工作,编写专著 17 部,发表学术论文 50 余篇。地址: 河北省廊坊市万庄 44 号信箱煤层气所。电话: ( 010) 69213108。E mail: zhqib@ petrochi-na. com. cn
Coalbed Methane Accumulation Conditions,Production Characteristics and Applicable Technology Analysis
ZHAO Qingbo SUN Fenjin LI Wuzhong LI Guizhong SUN Bin WANG Bo SUN Qinping CHEN Gang KONG Xiangwen
( Reserch Institute of Petroleum Exploration and Development,PetroChina,Langfang Branch, Langfang 065007 China)
Abstract: Accumulation model of coalbed methane can be divided into three types: authigenic reservoir with adsorbed gas,authigenic reservoir with free gas and authigenic source rock with external reservoir. Three accumu- lation stages are indicated as early stage accumulation,late stage accumulation with tectonic reworking and second- ary accumulation during development. Conditions for secondary accumulation during development are specially in- dicated. Micro-cycle in thick coal are analyzed using sedimentary facies. Coalbed interval with high gas content is classified,and further more,coal-forming sources type and its controling on coalbed methane productive and en- richment is explored. Mechanism of tectonic stess field and hydrodynamic force on coalbed methane accumulation is elaborated. Production characteristics of coalbed methane wells is concluded as follows: blocked,unblocked and unsaturated production stages are indicated,and unsaturated stage is considered to be divided into several deple- tion stages; structure localization and inner layer heterogeneity result in three production characteristics-self-sup- porting,exporting and importing types. According to geological setting,the applicability and its effect of 2 dimen- tional seismic AVO ( Amplitude versus Offset) ,pinnate horizontal multilateral well,ultrashort radius hyraulic jet- ting,U and V type well drilling technique is analyzed.
Keywords: Coalbed methane; accumulation model; coal-forming sources; productive and enrichment; pro- duction characteristics; applicable technology
1 煤层气成藏条件分析
1.1 煤层气成藏模式和成藏期
1.1.1 煤层气成藏模式划分为三类
自生自储吸附型:煤层气大部分以吸附态存在于煤层中,构造相对稳定的斜坡带富集。如沁水盆地南部潘庄水平井单井平均日产气3万m3;郑试60井3#煤埋深1337m,日产气2000m3。
自生自储游离型:煤层吸附气与游离气多少是相对的,多为同源共生互动,煤层气一部分以游离态存在于煤层中,有的局部构造高点占主体,早期煤层埋藏深、生气量高,后期抬升煤层变浅压实弱,次生割理发育渗透性好,两翼又是烃类供给指向,在有利封盖层条件下局部高点形成高渗透的高产富集区。准噶尔盆地彩南地区彩504井,构造发育的断块高点煤层次生割理裂隙发育物性好,游离气与吸附气同源共储,煤层深2575m,日产气6500m3。
内生外储型:煤层作为烃源岩,生成的气体向上部或围岩运移,在有利的圈闭条件下在砂岩、灰岩中形成游离气藏,使吸附气、游离气具有同源共生性、伴生性、转换性和叠置性,可在平面上叠加成大面积分布。鄂尔多斯盆地东缘韩城地区WL2015井山西组煤层顶板砂岩厚14.1m,压裂后井口压力为2.32MPa,日产气2400m3。

图 1 煤层气成藏模式图

1.1.2 煤层气成藏期划分为三类
早期成藏:随着沉积作用的进行,煤层埋深逐渐增加,大量气体持续生成。充分的生气环境,良好的运聚势能,足够的吸附作用,有利的可封闭、高饱和、高渗透成藏条件,为早期成藏奠定了基础。这类气藏δ13C1相对重(表1),表现为原生气藏特征。
构造改造后期成藏:系统的动平衡一旦被构造断裂活动打破,即煤层气藏将被水打开,煤层割理被方解石脉充填,则能量将再调整、烃类再分配,古煤层气藏遭受破坏,新的高产富集区块开始形成(图2)。
受构造抬升后在局部出现断裂背斜构造,抬升使煤层压力降低,气体发生解吸,构造运动产生的裂隙又沟通了低部位的气体,使之向局部构造高点运移聚集。当盆地沉降接受沉积时,压力逐渐增大,再次生气,背斜翼部气体再吸附聚集,这类气藏多为次生型,δ13C1相对轻(表1)。
表 1 不同类型气藏 CH4含量及 δ13C1分布表



图 2 煤层气运聚成藏过程

开采中二次成藏:煤层气原始状态为吸附态,开采中压力降至临界点后打破原平衡状态转变为游离态,气水将重新分配,解吸气窜层或窜位,从而形成煤层气开采中的二次成藏,这是常规油气不具备的条件。煤矿区这类气藏由于邻近采空区CH4含量较低。
(1)煤层气二次成藏中的窜位
窜位是指煤层气开采中气向高处或高渗区运移,水向低部位运移,形成煤粉、气、水三相流,再开发几年进入残余态,微小孔隙、深部气大量产出。煤层气开采过程中,在同一地区,有些井高产,有些井低产,这与他们所处的构造部位有关,解吸气向构造顶部或高渗通道差异流向或“游离成藏”,煤层气发生窜位,使得高点气大水少,甚至后期自喷,向斜水大气少。如蒲池背斜煤层气的开发实例(图3,表2)。
该地区早期整体排水降压单相流,中期气、水、煤粉三相流,后期低部位降压,高部位自喷高产气井单相流,4年后基本保持现状。区块中477口直井和57口水平井已开采4年多,目前产气不产水直井、水平井分别为29%、11%,产水不产气分别为12%、19%。
(2)煤层气二次成藏中的窜层
窜层是指煤层气开采中或煤层采空区上部塌陷中解吸气沿断层裂隙或后期开发中形成的通道等向上再聚集到其他层位。主要有五种情况:①原断层早期是封闭的,压力下降到临界点后是开启的;②水平井穿透顶底板和断层;③压裂压开顶底板;④开采应力释放产生裂缝使解吸气穿透顶底板进入砂岩、灰岩形成游离气;⑤煤层采空后顶板坍塌应力释放,底部出现裂隙带。
典型实例分析:
①阜新煤矿区开采应力释放导致二次成藏
采动、采空区:阜新钻井7口,采空区坍塌后在煤层顶部砂岩裂隙带单井日产气1.5万~2.15万m3,CH4含量大于50%。生产1年,单井累计产气折纯最高260万m3;阳泉年产气7.16亿m3,90%是邻层抽采;铁法70%煤层气是采动区采出(图4)。

图3 蒲池背斜煤层气开发特征图

表 2 蒲池背斜开发井开采情况


注: 日产气及日产水两栏中分子为四年前产量,分母为目前产量。

图 4 采动、采空区煤层气开采示意图

②直井压裂窜层
蒲南38井压裂显示超低破裂压力,为9.6MPa,低于邻井10MPa以上,初期日产水62m3,4年后目前为54.8m3,累计产气仅有3.8万m3。
③水平井窜层
FZP031井煤层进尺4084m,钻遇率81%,主、分支共钻遇断层4条,明显钻入下部水层,开发效果差(图5):最高间歇日产气1366m3,累计产气29万m3,累计产水4.3万m3,目前日产气392m3,日产水28m3;原水层的构造高点被解吸气占据。而比该井浅75m的FZP03-3井日产气3783m3,日产水5m3。
在煤层气的勘探开发中应形成一次开发井网找煤层吸附气,二次开发井网找生产中由于开采中压力下降,烃类由吸附态变游离态使气水重新分配,打破原始平衡状态,解吸气窜层或窜位形成二次成藏的游离气藏的勘探开发思路。
1.2 有利的成煤环境和煤层气高产富集旋回段
以往油气勘探上用沉积相分析砂体变化特征,通过对大量煤层粘土矿物分析、植物鉴定、测井特征,特别是全煤层取心观察,以及煤质和含气性分析认为:沉积环境对煤层气的生成、储集、保存和渗透性能的影响是通过控制储层物质组成来实现的,层内的非均质性和煤质的微旋回性受控于沉积环境,并控制层内含气性和渗透性的非均质变化。
平面上:河间湾相煤层厚、煤质好、含气量高、单井产量高,河边高地和湖洼潟湖相相反(表3)。

图5 FZP03 1、FZP03 3 水平井轨迹示意图

表3 鄂东气田 C—P 不同煤岩相带煤质与产量数据表


纵向上: 受沉积环境影响,厚煤层往往纵向上形成夹矸、暗煤、亮煤几个沉积旋回,亮煤镜质组含量高、渗透率高、含气量高。不同的煤岩组分受成煤母质类型的控制,高等植物丰富,经凝胶化作用形成的亮煤,灰分低、镜质组高、割理发育、含气量高; 碎屑物质、水溶解离子携入或草本成煤环境的暗煤相反。
武试 1 井 9#煤可划分为 4 个层内微旋回 ( 图 6) 。灰分含量: 暗煤 14% ~15%,亮煤3. 7% ~ 5. 1% ; 镜质组含量: 暗煤 23% ~ 49% ,亮煤 66% ~ 79% 。
1.3 构造应力场对煤层气成藏的控制作用
古应力场高值区断裂发育,水动力活跃,煤层矿化严重,含气量低; 低值区则煤层割理发育,处于承压水封闭环境,煤层气保存条件好,含气量高。局部构造高点也往往是应力场相对低值区,并且煤层渗透率高、单井产量高,煤层气保存条件好,煤层没被水洗刷,含气量高。
1.4 热演化作用对煤层气孔隙结构的控制作用
高煤阶以小于 0. 01μm 的微孔和 0. 01 ~1μm 中孔为主,一般在 80% 以上,中、微孔是煤层气主要吸附空间,靠次生割理、裂隙疏通运移;

图6 武试1井9#煤沉积旋回图

低煤阶以>1μm大孔和中孔为主,演化程度低,裂隙不发育,大孔是吸附气、游离气主要储集空间和扩散、渗流和产出通道;
中煤阶以中、大孔为主,中、大孔是煤层气扩散、渗流通道。
核磁共振:煤层气藏储层的T2弛豫时间谱,为特征的双峰结构,与常规低渗透储层T2弛豫时间谱相对照,煤层气储层的两个峰之间有明显的间隔,这说明对于煤层气储层,束缚水与可动流体并不能有效沟通。然而不同煤阶煤储层T2谱的结构不同,这源于不同的孔隙结构(图7、图8),低煤阶以大孔为主、高煤阶以微孔小孔为主,高煤阶曲线峰值煤层左峰高右峰低,峰值中间零值,低煤阶相反,左峰为不可流动孔隙,右峰为可流动的次生割理裂隙储集体;高煤阶右峰可流动峰值越高(割理发育),气井产量越高(图9)。
1.5 水动力场对煤层气藏的控制作用

图7 高、低煤阶孔隙结构特征

局部构造高点滞留水区低产水高产气,向斜承压区高产水。地下水一般在斜坡沟谷活跃,符合水往低处流、气向高处运移的机理。樊庄区块滞流—弱径流区域多为>2500m3/d高产井;东部地下水补给区含气量<10m3/t、含气饱和度55%,见气慢,单井产量200~500m3/d(图10)。

图8 不同煤阶孔隙分布特征图


图9 不同煤阶煤储层T2弛豫时间谱

2 煤层气开采特征
对于中国中低渗透性煤层,煤层气井一般为300m×300m井距,单井产量稳产期4~6年,水平井更短,开采中划分为上升期、稳产期、递减期三个阶段,递减期又可划分为多个阶梯状递减阶段。
2.1 构造部位和层内非均质性的差异形成三类开采特征
自给型:往往位于构造平缓、均质性强的地区。气产量为本井降压半径之内解吸的气从本井产出。排采井一般处于构造平缓部位,层内均质性强。日产气上升—稳产—递减三个阶段,这类井多低产(图11)。

图10 樊庄区块地下水与含气量、煤层气高产区关系图


图11 煤层气单井开采特征图

外输型:位于构造翼部、非均质性强的地区。气产量一部分通过本井降压解吸半径内从本井产出,而大部分通过高渗通道或沿上倾部位扩散到其他井内产出。排采井一般处于构造翼部、非均质性强。日产气低产或不产—上升—缓慢递减,这类井多低产,并且产量递减快。
蒲池背斜的P111、PN11、PN25、HP110、HP2113井位于背斜的翼部,属于构造的相对低部位,基本上没有气产出,而产水量较大,分析由于降压而解吸出来的气体向构造高部位运移而没有产出,具有输出型的开采特征。
输入型:多位于构造高点。初期本井降压解吸气随降压漏斗从本井产出,后期构造下倾部位解吸气又运移到本井产出。排采井处于构造高点,这类井一般高产、稳产期长。日产气上升—稳产—上升—递减。
蒲池背斜中位于构造高点的PN14、P13、PN27、P15井产气量高而产水量低,这与低部位气体的扩散输入有关,具有典型的输入型开采特征。
2.2 降压速率不同形成三类开采效果
2.2.1 畅通型解吸
抽排液面控制合理,降压速率接近解吸速率,有效应力引起的负效应小于基质收缩引起的正效应,渗透率随开采的束缚水、气产出上升—稳定,气泡带出部分束缚水,产量理想(图12Ⅰ)。以固X1井为例,该井排采制度合理,经半年的排水降压后液面基本保持稳定,日产气稳定在4320m3/d以上,目前还保持稳产高产。

图12 不同措施煤层气井产气影响特征曲线

2.2.2 超临界型解吸
解吸速率小于降压速率,降压液面下降速度太快,煤层裂缝、割理产生应力闭合,日产气急剧上升—急剧下降,渗透率下降—稳定,产气效果差(图12Ⅱ)。以固Y2井为例,该井经30余天的排水降压,液面降至煤层以下,由于抽排速度过快,前期产气效果差,2010年7月二次压裂及排采制度调整后,气体日产气量最高达4000m3/d,后期稳定在1600m3/d以上;PzP03井在产气高峰期日降液面63~87m,造成该井初期是全国单井产量最高(10.5万)而目前是该区单井产量最低的井。
2.2.3 阻碍型解吸
降液速率过慢,解吸速率大于降压速率,有效应力引起的负效应大于基质收缩的正效应,气泡变形解吸困难,降压早期受煤粉堵塞,液面阻力作用解吸不畅通,日产气不稳定,开发效果差(图12Ⅲ)。FzP03-3井开采770天关井26次以上,开发效果很差。
2.3 煤层水类型及其开采特征
煤层水可划分为层内水、层间水和外源水;高产气区为层内、层间水,有外源水区为低产气区。
(1)层内水:煤层割理、裂隙中的水。日产水小,开采中后期高部位几乎不产,低部位递减。层内水又可进一步划分为可动水(洞缝)、吸附水(煤粒面)、湿存水(<10-5cm毛管内)、结晶水(碳酸钙)四类。
(2)层间水:薄夹层水渗入煤层。开采中产水量明显递减,可控制。
有层间水的气井连续降压可控制水产量,提高开发效果。沁水樊庄FzP111井煤层总进尺4710m。2009年4月投产,最高日产水175m3,目前日产气21436m3,日产水20.7m3,套压0.15MPa,液面4m,累计产水3.7万m3,累计采气814万m3。可以看出,对有层间水进入煤层气井的情况,短期加大排水量,后期日产气持续上升,开发效果较好。
(3)外源水:断层或裂缝沟通高渗奥灰水及其他水层。产水大,难控制。
3 煤层气勘探开发适用技术分析
3.1 地震AVO技术预测高产富集区
煤层与围岩波阻抗差大,煤层本身是强反射。其内含气、含水的差异在局部异常突出:高含气后振幅随偏移距增大而减少产生AVO异常(亮点),这与常规天然气高阻抗振幅随偏移距增大而增大出现的亮点概念不同,具有以下特征:高产井强AVO异常(高含气量低含水),煤层段为大截距、大梯度异常,即亮点中的强点;低产井弱AVO异常(低含气量高含水)为低含气、低饱和、低渗透特征。
煤层气高产区强AVO异常区的吉试1井5#煤含气量21m3/t,日产气2847m3(图13);低产区弱AVO异常的吉试4井5#煤含气量12m3,日产气64m3,产水90m3。据此理论,可用地震AVO技术预测高产富集区。

图13 吉试1井5#煤AVO特征图

3.2 定向羽状水平井钻井适用地质条件
全国已钻定向羽状水平井160余口,单井最高日产气10.5万m3。定向羽状水平井技术适合于开采较低渗透储层的煤层气,集钻井、完井与增产措施于一体,能够最大限度地沟通煤层中的天然裂缝系统,使同一个地区单井产量可提高5~10倍,适用地质条件有以下10点:
(1)构造稳定无较大断层:FzP031钻遇4条断层,日产气最高1366m3,目前687m3,日产水32~75m3;韩城04、07、09井日产水20~48m3,日产气小于60m3。
(2)远离水层封盖条件好:三交顶板泥岩厚<2m,水大气少,SJ61井9#煤厚9.4m,顶板6.8m灰岩,煤层进尺4137m,钻遇率100%,最高日产水465m3,19个月产水4.6万m3,不产气。
(3)软煤构造煤不发育:韩城、和顺12口井单井平均日产气720m3。
(4)煤层埋深小于1000m:煤层深800~1000m的武m11、Fz151井日产气<500m3。
(5)煤厚>5m:柳林CL3井煤层厚4m,最高日产气0.95万m3,稳产160天递减,日产气2807m3,累计121万m3。
(6)含气量>15m3/t:潘庄东部8m3/t(盖层厚2~5m),北部15~22m3/t(盖层厚>10m),尽管东部比北部浅100~200m,而北部6口井单井平均日产气3.0万m3,东部7口为1869m3,最高3697m3,相距6km单井产量差20倍。
(7)主分支平行煤层或上倾:单井平均日产气、阶段累计和地层下降1MPa采气效果分析,水平井轨迹:平行煤层产状最好,其次上倾,下倾差;“凸”“凹”型最差。
(8)煤层有效进尺>3000m:水平段煤层进尺<2000m的单井最高日产气<800m3,阶段累计采气<2.0万m3。
(9)分支展布合理:主支长1000m左右,分支间距200~300m,夹角10°~20°。
(10)煤层有效钻遇率>85%:10口井煤层钻遇率<85%,并投产1年以上,单井平均日产气800m3,最高<2000m3,阶段平均累计采气27万m3。
3.3 超短半径水力喷射钻井适用条件
我国利用该技术已钻煤层气井23口以上,效果均不理想。主要原因为低渗透,喷孔直径小、弯曲大,前喷后堵;水力喷射开窗直径28mm,孔径小,排采中易被煤粉和水堵塞。可进行旋转式大口径喷咀和裸眼喷射试验。
3.4 “山”型井、U型井、V型井钻井适用条件
由于中国煤层气藏具有低渗透的特点,且多属断块气藏,U型水平井沟通煤层面积小,应用效果较差。我国钻U型水平井16口以上,增产效果不明显。
SJ12-1井分段压裂日产气稳产1750m3,累计产气19.1万m3,开采3个半月后已递减。水平段下油管、玻璃钢管都取得成功,低渗透气藏效果差。较高渗透区[(1.0~3.6)×10-3μm2]效果好:彬长、寺河单井日产气0.56万~1.4万m3。
今后可进行1口水平井穿多个直井的“山”字型井组试验,目前国外利用该技术开发盐岩已成功。
4 结论
(1)根据中国煤层气勘探开发实践认识将煤层气成藏模式划分为自生自储吸附型、自生自储游离型、内生外储型三类;同时,认为煤层气成藏期划分早期成藏、后期构造改造成藏和开采中二次成藏三类,开采中二次成藏将是煤层气开发二次井网的主要产量接替领域。
(2)利用沉积相分析厚煤层、优质煤层和高产富集区;分析厚煤层的层内微旋回,成煤母质控制煤岩组分和单井产量,高等植物丰富,经凝胶化作用形成的亮煤,灰分低、镜质组高、割理发育、含气量高,是高产富集段;碎屑物质、水溶解离子携入或草本成煤环境的暗煤相反。
(3)古应力场低值区则煤层割理发育,处于承压水封闭环境,煤层气保存条件好,含气量高;滞留水区低产水高产气,向斜承压区高产水。
(4)由构造部位和层内非均质性的差异形成自给型、外输型和输入型三类开采特征,由降压速率不同形成畅通型、阻碍型和超临界型三类开采效果。
(5)高产井强AVO异常,即亮点中的强点;低产井弱AVO异常,为低含气、低饱和、低渗透特征。定向羽状水平井在适用的地质条件和钻井方式下才能取得较好的开发效果;超短半径水力喷射应首选渗透率较高、煤层构造相对稳定、含气量和饱和度较高煤层应用;U型、V型水平井钻井技术在低渗透气藏中效果差,高渗透区效果好。
参考文献
陈刚,赵庆波,李五忠等.2009.大宁—吉县地区地应力场对高渗区的控制[J].中国煤层气,6(3):15~20
陈振宏,贾承造,宋岩等.2007.构造抬升对高、低煤阶煤层气藏储集层物性的影响[J].石油勘探与开发,34(4):461~464
陈振宏,王一兵,杨焦生等.2009.影响煤层气井产量的关键因素分析———以沁水盆地南部樊庄区块为例[J].石油学报,30(3):409~412
邓泽,康永尚,刘洪林等.2009.开发过程中煤储层渗透率动态变化特征[J].煤炭学报,34(7):947~951
康永尚,邓泽,刘洪林.2008.我国煤层气井排采工作制度探讨[J].天然气地球科学,19(3):423~426
李金海,苏现波,林晓英等.2009.煤层气井排采速率与产能的关系[J].煤炭学报,34(3):376~380
乔磊,申瑞臣,黄洪春等.2007.煤层气多分支水平井钻井工艺研究[J].石油学报,28(3):112~115
鲜保安,高德利,李安启等.2005.煤层气定向羽状水平井开采机理与应用分析[J].天然气工业,25(1):114~117
赵庆波,陈刚,李贵中.2009.中国煤层气富集高产规律、开采特点及勘探开发适用技术[J].天然气工业,29(9):13~19
赵庆波,李贵中,孙粉锦等.2009.煤层气地质选区评价理论与勘探技术[M].北京:石油工业出版社
Diessel C F K. 1992. Coal-bearing depositional systems-coal facies and depositional environments. Springer-verlag. 19 ~ 22

沁水盆地宏观煤岩类型,太原组15煤和山西组2、3煤以光亮、半亮煤为主,半暗、暗淡煤次之。煤岩显微组分以镜质组为主,含量68.2%~93.3%,并以无结构镜质体和基质镜质体为主。镜质组和半镜质组平均含量太原组略高于山西组,太原组15煤为80.4%,山西组2、3煤为78.14%,余为丝质组。无机物矿物成分以粘土矿物为主,少量碳酸盐岩与硫化物。煤岩灰分太原组15煤为1.5%~25%,山西组2、3煤为3.6%~15.9%,属中低灰煤。霍西、潞安原煤灰分为10%左右,属低—中灰煤,盆地北部和南部20%左右,多为中—高灰煤。原煤硫分太原组大于1%,为中、高硫煤,山西组小于1%,为低硫煤。煤岩水分0.83%~2.26%,西山、霍山、潞安1%左右,阳泉大于1%,晋城大于2%。煤岩挥发分由于煤种复杂变化亦较大,为4.33%~32.84%,西部煤变质程度低,挥发分相对较高,为20%~30%,东部变质程度高,挥发分较低,潞安小于15%,阳泉10%左右,晋城5%~7%。纵向上挥发分随埋深而降低。整个盆地挥发分变化,西部交城至古县以西挥发分大于20%,霍山以西洪洞、万安达40.41%,是盆地内煤岩变质程度最低的地区。东部左权至子长挥发分大于15%,为高变质烟煤区,盆地腹部挥发分小于15%,为高变质烟煤、无烟煤区。盆地南部晋城挥发分5%~7%,属Ⅱ号无烟煤,是全盆地煤变质程度最高地区。

沁水盆地煤岩变质程度较高,太原组和山西组含煤地层除西山和盆地中部的东西两侧狭窄地带为肥、焦、瘦煤外,绝大部分地区为贫煤和无烟煤,Ro,max为1.9%~4.35%。太原组无烟煤分布面积较山西组大,主要分布于盆地南北两端,山西组无烟煤分布面积较小,仅分布在盆地北部阳泉和南部晋城、阳城一带。石炭、二叠系含煤地层其上覆二叠、三叠系地层厚2000~3000 m,以此推算三叠纪末Ro,max为0.57%~1.04%,应属气、肥煤阶,但整个盆地煤岩变质程度高达贫煤、无烟煤煤阶。燕山期构造运动强烈,太原以西和临汾至侯马有二长斑岩、闪长岩出露,昔阳一带有玄武岩出露,物探显示太谷—平遥间有闪长岩侵入体,盆地北部和南部正磁异常推测亦为侵入体,由此推断盆地深部有侵入体岩基存在,隐伏岩体埋深北部2500~3000 m,南部500~1500 m,花岗岩体与喷溢玄武岩为燕山期与喜马拉雅期,形成区域性地热异常区,在较高地热场背景下受区域性岩浆热变质叠加作用,除盆地中部和东西两侧煤阶较低外,盆地北部、南部以及整个盆地含煤地层变质程度相对较高。

沁水盆地太原组、山西组含煤地层有效孔隙度为1.15%~7.69%,一般小于5%。资料表明,煤岩孔隙度随煤岩变质程度增高呈现两头高中间低,肥煤、焦煤孔隙度最低,瘦煤以后有所增高。不同变质程度煤孔隙大小、孔隙体积有所不同,中变质煤大、中孔发育,高变质煤过渡孔较多,各煤种微孔均较发育。

沁水盆地煤岩煤体结构类型较多,阳泉、晋城3、15煤变质程度高,煤体结构基本为原生结构,其中3煤底部1m厚的软煤层为粒状、鳞片状结构。西山、潞安2、8煤和3煤多为原生—碎裂结构,潞安3煤亦有碎粒、糜棱结构。

沁水盆地煤岩裂隙一般为两组,即主裂隙与次裂隙,两组正交或斜交相伴而生,并与煤层层理面垂直或斜交。西山主裂隙走向35°~70°,次裂隙走向310°~345°,潞安主裂隙走向280°~340°,次裂隙走向27°~60°,阳泉有两组裂隙,晋城有三个裂隙系统。宏观观测煤岩裂隙密度与间距,阳泉大型裂隙密度2.7条/m,间距37 cm;中型裂隙密度33条/m,间距3.0 cm;小型裂隙密度200条/m,间距0.5 cm;微型裂隙密度500条/m,间距0.2 cm。晋城除大型裂隙外,密度均低于阳泉,间距均高于阳泉。西山3煤和8煤大、中型裂隙密度分别为15条/m和7.5条/m,间距为6.7~13.3 cm。潞安3煤大、中型裂隙密度为9条/m,间距11.1 cm。微观观测微小裂隙密度,西山裂隙密度2.0~10.2条/cm,间距1~7.7 mm;潞安裂隙密度1.7~8.7条/cm,间距1.2~5.9 mm;阳泉裂隙平均密度3.5条/cm,平均间距2.8 mm;晋城裂隙平均密度2.1条/cm,平均间距4.7 mm。可见盆地内微小裂隙密度和间距变化都不大。西山、潞安主要煤层裂隙无矿物质充填,阳泉、晋城多有方解石或黄铁矿、粘土矿物充填。对煤层主、次裂隙发育特征研究可见,阳泉、潞安、晋城主裂隙为北西向,次裂隙为北东向,西山主要裂隙为北东向,次裂隙为北西向,说明裂隙的发育与区域应力场和局部应场的关系密切。不同煤质煤岩裂隙发育程度不同,太原组15煤的光亮煤成分比山西组3煤高,15煤裂隙较3煤发育,太原组煤层比山西组裂隙网络发育要好,其渗透性相对较好。

在隆起背景经变形改造形成的沁水盆地,受区域岩浆地热场影响,埋深较浅的含煤岩系变质程度却相对增高,但其内生裂隙发育程度并未变差。据盆地边部煤样光面统计,贫煤、无烟煤面割理密度为9~16条/5cm,端割理密度5~18条/5cm,以网状割理组合为主,孤立—网状和孤立状组合为次,开启性较好,偶见充填。割理密度随煤岩变质程度加深和煤岩类型变差而降低。统计表明,面割理走向与褶皱轴向大致垂直,端割理走向与褶皱轴近乎平行。

据煤炭统计资料,1966年至1990年沁水盆地煤矿发生煤层瓦斯突出3654次,最大瓦斯涌出量17640 m3/次,瓦斯抽放率11.34%~22.57%,平均吨煤瓦斯抽放量为3.32~8.02 m3/t,以此可以间接判断煤层含气量高低。通过煤层气评价研究认为,沁水盆地煤层含气量较高,为5~29 m3/t。盆地北部阳泉含气量6~25 m3/t,东部潞安8~12 m3/t,晋城8~29 m3/t,屯留4.60~17.68 m3/t。盆地南部阳城潘庄7口煤层气试验井,3煤含气量13 m3/t,15煤为18 m3/t;樊庄3煤含气量8~23 m3/t,均值12.3 m3/t;15煤含气量10~19 m3/t,均值11.3 m3/t。晋试1井含气量较高,达19.29~31.75 m3/t,均值25.1m3/t。

统计资料表明,煤层含气量与煤层埋藏深度相关,煤层含气量有随煤层埋深增大而增加的趋势,自盆边向盆地腹部含气量逐渐增大。煤层埋深小于300 m地带,含气量一般低于8.00 m3/t,晋城煤变质程度高,含气量为10~12 m3/t;煤层埋深300~600 m间,含气量为10~16 m3/t;在600~1000 m深度含气量为14~22 m3/t,至1500 m深度含气量达25 m3/t;盆地北部煤层埋深近2000 m,含气量最大可达30 m3/t。含气量变化梯度有由浅至深逐渐变小的趋势。

沁水盆地煤层含气量与煤岩变质程度相关,煤岩变质程度越高,含气量越高。屯留为瘦煤(Ro,max1.7%),寿阳韩庄为贫煤(Ro,max1.8%~2.4%),阳城为无烟煤(Ro,max4.1%)。煤层埋深均为500 m条件下,最高含气量屯留和韩庄为16.5~17 m3/t,阳城为38 m3/t。煤层埋深增加含气量增大,韩庄为贫煤(Ro,max1.8%~2.4%),煤层埋深510~620 m含气量为16.5 m3/t,埋深550~780 m含气量为17.7 m3/t,埋深620~920 m含气量为18.9 m3/t。潞安屯留3煤为瘦煤(Ro,max1.73%),阳城潘庄为无烟煤(Ro,max4.058%~4.134%),煤层含气量统计资料均表明,随煤层埋深增大含气量有随之增加的趋势。

煤岩吸附能力是评价研究煤层气藏的重要因素,煤岩等温吸附参数包括兰氏体积和兰氏压力。沁水盆地太原组15煤和山西组3煤,在平衡湿度条件下恒温30℃进行甲烷解吸测试,结果测试压力小于1.0 MPa时,两条曲线基本重合,而压力大于1.0 MPa时,15煤的等温吸附曲线位于上方较3煤陡,煤阶较高的15煤兰氏体积和兰氏压力明显高于3煤,说明15煤吸附能力较3煤强。在含气量相同时,3煤临界解吸压力高于15煤。其中3煤兰氏体积为33.43 m3/t.daf,兰氏压力为1.78 MPa,Ro,max为1.73%。15煤兰氏体积为40.91 m3/t.daf,兰氏压力为2.09 MPa,Ro,max为2.04%。西安煤炭研究分院对盆地12个样品测试说明,沁水盆地太原组、山西组主要煤层吸附能力相对比较高,原煤饱和吸附量为20.54~39.06 m3/t,平均29.81 m3/t;可燃质饱和吸附量为23.90~51.81 m3/t,平均36.58 m3/t;兰氏压力中等为1.93~3.43 MPa,平均2.62 MPa。测试结果表明,在等温条件下,吸附量与储层压力呈正相关,压力增高吸附量增大,在0~1 MPa区间吸附量随压力增高,斜率较高呈似直线,此后增长率逐渐变小,不同区间吸附量增长不等,直至吸附增量为零,煤岩吸附量达到饱和状态。在相同温度、压力条件下,随煤阶增高吸附量增大,在煤阶变化过程中,兰氏体积与兰氏压力呈互为消长趋势,即煤岩变质程度增高,兰氏体积增大而兰氏压力减少。在盆地的不同位置、不同煤层等温吸附曲线形态均有差异。一般为14.06~38.12 m3/t,均值 24.27 m3/t。盆地北部阳泉、东部潞安、南部晋城兰氏体积大,西部西山、古交、霍州兰氏体积较小。阳城北樊庄晋试1井测试兰氏体积为39.91~46.84 m3/t。兰氏压力值晋城、西山较高,阳泉、潞安次之,一般为0.9~2.249 MPa,均值2.03 MPa。晋试1井兰氏压力为3.034~3.184 MPa。一般情况兰氏体积大兰氏压力亦高。

沁水盆地煤岩等温吸附特征表明,山西组和太原组主要煤层的兰氏体积,瘦煤(Ro,max1.73%~1.80%)为26.27~33.43 cm3/g,贫煤(Ro,max2.04%)为40.91 cm3/g,无烟煤(Ro,max3.76%~3.90%)为46.66~49.16 cm3/g,呈现兰氏体积随煤阶升高而增加的趋势。主要煤层的兰氏压力,瘦煤1.38~1.78 MPa,贫煤2.09 MPa,无烟煤2.98~3.47 MPa,兰氏压力与煤阶亦为正相关。资料表明,贫煤、无烟煤的平衡湿度为6.14%~9.26%,明显高于瘦煤2.18%~3.45%平衡湿度。样品测试气体扩散速率为0.867074×10-4~0.236990×10-2l/s,表明沁水盆地煤层气扩散能力较强,有利于煤层气的产出。

煤层气含气饱和度是实测含气量与理论吸附量之比。沁水盆地勘探程度有限,现有资料反映出含气饱和度较高,接近饱和甚至过饱和状态。阳城潘庄潘1井3煤在井深322.7~328.2 m,实测含气量为22.58 m3/t,理论吸附量为21.05 m3/t,煤层含气饱和度为107%。CQ—9井3煤井深286.5~293.6 m,实测含气量21.54 m3/t,理论吸附量18.40 m3/t,含气饱和度117%;15煤井深380.9~383.4 m,实测含气量23.45 m3/t,理论吸附量24.32 m3/t,含气饱和度96%。晋试1井测试资料反映含气饱和度较高,3煤埋深522.10 m,兰氏体积39.91 m3/t,兰氏压力3.034 MPa,储层压力5.10 MPa,含气量23.80 m3/t,临界解吸压力4.48 MPa,含气饱和度为95.11%。15煤埋深606.10 m,兰氏体积46.843/t,兰氏压力3.184 MPa,储层压力6.017 MPa,含气量26.51 m3/t,临界解吸压力4.15 MPa,含气饱和度为86.28%。从测试资料统计测算,潞安长治3煤含气饱和度为87%,寿阳15煤含气饱和度为80%,阳城潘庄太原组煤层含气饱和度为中等至较高。从沁水盆地沉积构造发育来看,石炭、二叠系含煤岩系在印支末至燕山期隆升,亦是煤岩成煤、成烃转化期,喜马拉雅期仅在局部形成断陷,一般不存在煤层欠饱和的构造条件。但沁水盆地地下水径流活动,地下水与地表水交换活跃,可能是盆地内出现欠饱和的主要因素。

沁水盆地煤层渗透率较低,一般小于1×10-3μm2,面割理走向渗透率大于端割理走向方向。盆地南部煤层气井用试井方法测试的煤储层渗透率一般小于1×10-3μm2,最大3.16×10-3μm2,不同试井方法测值不同,DST测试结果一般偏低。潘2井、晋CQ—9井构造裂缝发育,储层渗透率变好。潘1井3、9、15煤用DST方法测试渗透率为(0.001~0.130)×10-3μm2,潘2井主煤层用注入压降试井方法测试渗透率为1.53×10-3μm2。屯留1井和2井均用DST方法测试3煤为(0.025~0.034)×10-3μm2,15煤为0.015×10-3μm2。晋CQ—9井用注入压降法试井3煤为3.16×10-3μm2,阳泉HG—6井7煤为(0.93~5.67)×10-3μm2,9煤为0.42×10-3μm2,15煤为(0.43~6.73)×10-3μm2

煤储层压力参数是评价研究煤层气藏的重要依据。沁水盆地42口水文钻孔资料测算地层压力及压力梯度在垂向和横向上均有较大差异。阳城太原组深度200~450 m,地层压力1.97~3.72 MPa,压力梯度0.0083~0.0105 MPa/m;山西组深度117~350.26 m,地层压力1.13~2.95 MPa,压力梯度0.00841~0.00945 MPa/m。潞安、长治太原组深度624.36~677.50 m,地层压力4.16~4.53 MPa,压力梯度0.0062~0.0072 MPa/m;山西组深度212.06~577.80 m,地层压力1.54~3.27 MPa,压力梯度0.0057~0.0073 MPa/m。寿阳、阳泉太原组深度222.38~633.84 m,地层压力1.21~3.42 MPa,压力梯度0.0054~0.0057 MPa/m;山西组深度310~544.80 m,地层压力1.21~3.42 MPa,压力梯度0.0027~0.0047 MPa/m。盆地4口井3个层位测试结果,采用注入压降试井的晋CQ—9井,3煤井深289 m,地层压力2.31 MPa,压力梯度0.008 MPa/m;阳泉HG1井3煤井深512 m,地层压力3.99 MPa,压力梯度0.008 MPa/m;15煤井深627 m,地层压力5.93 MPa,压力梯度0.009 MPa/m。采用DST试井方法的阳城潘1、2井为3、9、15煤,井深为328、328和369 m,地层压力为3.28、3.88和3.43MPa,压力梯度为0.010、0.012和0.009MPa/m。以上资料表明,上二叠统上石盒子组地层是区域性正常—微超压层,地层压力梯度为0.01 MPa/m左右,钻井钻进常有涌水,水头可达数米之高。自上石盒子组至中奥陶统马家沟组,地层压力逐渐增高,压力梯度逐渐减小。地层压力在盆地不同部位有所差异,盆地南部阳城压力近于正常,盆地东部潞安长治,盆地北部寿阳、阳泉,山西组、太原组和奥陶系灰岩地层压力梯度较低,地层欠压严重。沁参1井山西组煤层测试资料表明,盆地中部地层属微欠压或近于正常压力。沁水盆地为印支期后形成的构造盆地,沉积岩层经变形改造后形成复式向斜,不同含水层均以向斜构型形成水动力系统,达到总体的平衡。由于盆地构造部位不同,受挽近构造运动改造程度不同,以及大型复式向斜自身的复杂性,造成盆地内地层压力的差异。地层欠压严重的寿阳、阳泉一带,已有资料证实与岩溶陷落有关。在阳泉已揭露陷落柱348个,西山达573个,局部地区陷落柱密度可达28个/km2。岩溶陷落柱多为椭圆形,直径小者10 m,大者200~500 m。

有效地应力与煤层渗透性密切相关,有效地应力为地应力与地层压力之差,地应力由构造应力和静岩压力构成,随地层埋深增加而增高,当地层压力保持不变时,有效地应力随之增高。有效地应力越高,煤层渗透率越低,有效地应力越低,煤层渗透率越高。对盆地勘探目标层位有效地应力的测定需随煤层气勘探程度提高而获取,就已有测试井获取的资料说明,测试区有效地应力相对较低,对煤层渗透性改善有利。HG1井太原组15煤煤层中部深627.31 m,最小原地水平主应力7.45 MPa,原始地层压力5.93 MPa,原始地层压力梯度0.0095 MPa/m,最小原地水平主应力梯度0.0119 MPa/m,最小原地有效地应力梯度0.0024 MPa/m。沁参1井山西组煤层中部井深1021.9 m,最小原地水平主应力15.5 MPa,原始地层压力9.635 MPa,原始地层压力梯度0.0094 MPa/m,最小原地水平主应力梯度0.0152 MPa/m,最小原地有效地应力梯度0.0057 MPa/m。

沁水盆地石炭、二叠系含煤岩系具有较好的封盖层,对煤层气成藏、保存较为有利。上石盒子组泥岩段厚度大,单层最大厚度60 m。下石盒子组泥岩单层厚度16~25 m,最厚37 m,累厚422.9 m,在全盆地发育稳定,是良好的区域性盖层。山西组泥岩累计厚度反映盆地中部以南泥岩较发育,沁参1井泥岩累厚90 m,盆地北部太原、阳泉一带变薄。山西组3煤之上泥岩在盆地北部、南部较厚,潘2井累厚25.4 m,盆地中部沁县为23 m,盆地南部和边缘较薄。太原组泥岩比较发育,盆地自西而东逐渐变厚,沁1井最厚为64 m。太原组15煤之上泥岩在盆地东部较稳定,沁1井最厚46 m。本溪组铝土岩在盆地分布广泛,南部厚4~5 m,北部厚1.5~6.3 m,中部较厚,最厚达13 m,是石炭系与奥陶系的良好隔水层。从主煤层顶底板封盖条件分析,15煤顶板厚2~16 m,盆地北部为泥岩,中部为砂岩,南部为灰岩,顶板之上为庙沟灰岩,可见封盖条件北部优于南部。3煤顶板岩性变化较大,厚2~6 m,为砂质泥岩、泥质粉砂岩和致密砂岩,封盖性较好,3煤底板是1~4 m厚泥岩,最厚14 m,分布稳定,是良好的封隔层。

沁水盆地为一沉积构造盆地,北北东向似椭圆形的盆地周围被下古生代老岩层所围限,盆地周缘高、中间低呈盆地地貌,四周为海拔1500~2000 m的中高山,盆地中部上古生界、中新生界地层组成低山、丘陵或平原,盆地中部自霍山东翼至昔阳为海拔1600~1800 m的分水岭。受盆地地势控制地表水系形成以汾河为主体的水系,地下水与地表径流供水和泄水组成统一的水动力系统。沁水盆地区域含水层可分三类,松散孔隙含水层、裂隙含水层和裂隙岩溶含水层。松散孔隙含水层为第三系、第四系砂砾石层。裂隙含水层为石炭、二叠系和三叠系砂岩、页岩裂隙含水层。裂隙岩溶含水层为太原组薄层灰岩和奥陶系灰岩。太原组和山西组煤层普遍含水,储水空间是煤层割理及外生裂隙,孔隙度在无应力状态测试<1%至4%,富水性很弱。

据盆地含水层特征与煤层关系分析,新生界疏散孔隙含水层底部粘土层隔水性好,与含煤岩系相隔较远,与煤层水力联系较小。三叠系裂隙含水层下伏石千峰组有约100 m泥质岩隔水层对煤层影响亦很小。上石盒子组砂岩裂隙含水层其下具多层较厚泥质岩,隔水性能良好,对煤层影响亦小。影响山西组煤层的是上、下围岩裂隙含水层,主煤层3煤顶板砂岩裂隙含水层位于煤层之上数米,至中部地区为直接顶板,由1~3层细—粗粒砂岩组成,厚6 m,最大23 m,富水性弱,盆地南部抽水试验涌水量0.0011 l/,盆地东部潞安部分钻孔一抽即干,说明3煤顶板砂岩裂隙含水对煤层水浸有限。裂隙含水层与煤层关系复杂,太原组15、13、11 煤层直接顶板为灰岩,岩溶不发育,裂隙不发育—较发育,多被方解石充填,富水性弱,对煤层影响不大,但寿阳钻井涌水量达8.102 l/,因此局部可能富水性强。奥陶系马家沟灰岩裂隙岩溶含水层,其水头标高高于15 煤底标高,寿阳、阳城都高于15煤标高,愈向盆地标高差愈大,奥陶系灰岩裂隙岩溶含水层与15煤底板相隔5~60 m,一般能起到隔水层作用,但当有裂隙通道时可能会连通。可见,煤层含水性弱,与围岩水力沟通程度取决于围岩的裂隙开启及岩溶发育程度。石炭、二叠系砂岩裂隙含水层富水性较弱,泥岩隔水层发育,对煤层气开发影响有限。奥陶系灰岩和石炭系太原组灰岩层局部富水性强,在断裂及岩溶陷落柱发育区对煤层有直接影响,对煤层气开发不利。

煤层气资源量是评价含煤盆地或煤层气藏资源前景的综合性量化参数,沁水盆地资源量测算以300~1000 m煤层埋深计算潜在资源量,1000~2000 m煤层埋深计算推测资源量。潜在资源量计算面积12700 km2,资源丰度(0.5~1.5)×108m3/km2,潜在资源量为(6375~19125)×108m3,均值12750×108m3。推测资源量煤层埋深1000~2000 m,含煤面积15400 km2(山西组与太原组面积之和),含气量23~26 m3/t,推测资源量(23299~26338)×108m3,均值25325×108m3;无烟煤面积4500 km2,含气量25~28 m3/t,推测资源量(14350~16072)×108m3,均值14925×108m3。沁水盆地煤层气总资源量(44024~61535)×108m3,均值53000×108m3。以此并综合煤层气地质条件,华北石油局对沁水盆地潞安长治、寿阳、阳城三个区块进行了综合评价并提出勘探开发建议。

西安煤炭研究分院对沁水盆地煤层气资源量亦进行测算,测算时删除200 m以浅甲烷风化带,将之下分为200~600 m,600~1000 m,1000~1500 m,>1500 m四段,可采煤层以大于0.6 m厚为限(阳泉>0.8 m)。计算结果:煤层气总资源量82032.91×108m3,总面积31911.62 km2,其中3煤17631.63×108m3,15煤30176.26×108m3。埋深200~600m,面积9297.28 km2,资源量15619.56×108m3;埋深600~1000 m,面积7515.39 km2,资源量18514.98×108m3;埋深1000~1500 m,面积8276.62 km2,资源量 25106.89×108m3;埋深>1500 m,面积6822.33 km2,资源量22791.47×108m3

沁水盆地是由华北古生代克拉通盆地经后期构造运动改造、分割变形的中型含煤沉积构造盆地,改造后的盆地呈复式向斜样式保存较为完整,内部构造较为简单,含煤岩系分布较为稳定,煤层厚度较大,煤层埋深适中,煤炭资源丰富。盆地主要含煤岩层上石炭统太原组、下二叠统山西组,含煤11~20层,煤层厚5~17 m,山西组3煤和太原组15煤在盆地内部稳定,埋深300~1500 m主采煤层占含煤总面积一半。石炭、二叠系含煤岩系变质程度相对较高,煤岩吸附能力较强,含气量达8~25 m3/t,2000 m以浅的煤层气资源量达53000×108m3,资源丰度(0.5~1.5)×108m3,是煤层气资源较为丰富的含煤盆地。沁水盆地是处于隆升构造背景下早期沉积晚期成盆的含煤盆地,具有较高的区域地热场背景,含煤岩系变质程度较高,是制约煤层气可采性的不利条件,但从煤岩储集层综合分析还有诸多有利因素。沁水盆地含煤岩系煤层割理较发育,外生裂隙亦发育,等温吸附特征较好,兰氏体积高,兰氏压力亦高,含气饱和度中等—偏高,气体扩散速率高,对气体解吸有利,煤层压力较正常或偏高,有利于煤层渗透性的改善和储层流体产出动能的提高。地层有效地应力低,利于煤层渗透性变好。煤体结构多为原生结构,对钻井完井和煤层渗透性改善有利。太原组、山西组煤层顶、底板岩性多为泥质岩,对煤层封盖较为有利,盆地水动力条件亦有较有利的条件。综合各种因素总体评价沁水含煤盆地煤层气资源前景较好,开发煤层气条件较为有利。



煤层气地质特征及成藏条件
答:(二)成藏条件 1.煤层厚度大、分布稳定,热演化程度高,生气量大,含气量高 煤层总厚度大多在5m以上,区内煤层气勘探主要目的层石炭—二叠系山西组3号和太原组9号煤厚度稳定,在盆地内分布广。沁水盆地煤的变质程度普遍较高,R0值一般在1.5%~4.5%之间,煤阶主要为无烟煤Ⅲ号、贫煤和瘦煤。据热...

煤层气富集成藏条件
答:煤作为煤层气的源岩,展布范围广、厚度大、热演化程度高的煤层是煤层气富集成藏最为有利的气源条件。沁水盆地南部山西组和太原组煤层厚度变化范围为8~12m,在深成变质作用的背景下叠加的岩浆热变质作用,使煤热演化程度大幅提高,Romax为1.9%~5.25%,以无烟煤为主,煤层的生气能力很强,达170m3/t以上,远大于煤层自...

煤成气成藏的基本条件
答:2)共生型:这是一种在含煤地层大量生气的同时构造也在形成的类型,是一类较好的搭配关系,在准噶尔盆地、四川盆地中均有发育。 3)早生晚成型:属于典型的不配套情况,如沁水煤田的老君头、丰村等背斜构造,其形成于大量生气之后,已无法捕集到气,故多为“空构造”。 4.3.2 含煤地层的储集层特征 4.3.2.1 中国含...

沁水盆地
答:(四)煤层气成藏条件 1.煤层厚度大、分布稳定,热演化程度高,生气量大,含气量高 煤层总厚度大多在5m 以上,区内煤层气勘探主要目的层石炭—二叠系山西组3号和太原组9号煤厚度稳定,在盆地内分布广。沁水盆地煤的变质程度普遍较高,Ro值一般在1.5%~4.5%之间,煤阶主要为无烟煤Ⅲ号、贫煤和瘦煤。据热模拟实验结果...

煤层气成藏特征及高产富集条件
答:沁水煤层气田处于气体运移的区域指向,而煤层由于上覆50m厚的泥岩盖层,封盖条件好,受北西—南东两个方向的侧向水封堵,在樊庄—潘庄一带为局部滞流水环境,形成构造变形差异聚集承压水封堵煤层气藏,水的总矿化度较高,气藏的δ13C1重,一般为-28‰~-30‰,具原始气藏特征。 表4-1 中国中高煤阶区煤层气成因分...

典型实例
答:气藏的北部主要受地下水分水岭控制,该分水岭呈东西向展布,东部至露头,西部至寺头断层。 3.煤层气成藏过程与成藏机制 沁水盆地的构造发展经历了前古生代的盆地基地发育形成阶段及新生代的边缘改造阶段。上古生界有利的成煤环境形成了厚且连续稳定的煤层,构成了煤层气富集成藏的物质基础。太原组15号煤和山西组3号...

含煤—煤层气盆地的改造与保存
答:具有富集泥炭层的沉积盆地需要在相当的地层温度、地层压力条件下才能变质为煤和烃类气体,这种条件的形成是在后期岩层的不断叠置,使先期已经成岩的煤岩层不断深埋过程中完成的。未经成岩、成煤、成烃质变的沉积盆地称不上是真正的含煤—煤层气盆地,仅仅是泥炭堆积或沉积物的堆积而已。含煤岩系的这种质变,无论是深...

煤层气有利目标区优选
答:阜新含煤地层为中生界白垩系下统阜新组,高瓦斯矿区面积27.62km2,3个矿未采区煤层气储量共计70.68×108m3,3个矿采空区煤层气储量共计23.62×108m3,3个矿煤层气总储量为94.30×108m3 (表8-10)。2009年产气约3000×104m3。 2.煤层气成藏条件 刘家-王营区普遍发育是喜马拉雅期辉绿岩。由于岩浆的侵入活动,促进了...

郑庄区块煤层气富集主控地质因素及开发前景分析
答:本文从沉积环境、水文地质条件及地质构造三个方面,对沁水盆地南部郑庄区块山西组 3#和太原组 15#煤层气富集规律进行了分析。结果表明: ( 1) 区块内 3#煤层顶板以厚层泥岩为主,15#煤层顶板为一大套碳酸盐岩沉积,两类顶板封盖性好,有利于煤层气保存; ( 2) 区块位于滞水洼地附近,水力封闭作用有利于煤层气富集;...

煤层气成藏条件、开采特征及开发适用技术分析
答:摘要: 煤层气成藏模式可划分为自生自储吸附型、自生自储游离型、内生外储型; 煤层气成藏期可划分为早期成藏、后期构造改造成藏和开采中二次成藏,特别指出了开采中二次成藏的条件。利用沉积相分析厚煤层的层内微旋回,细划分出优质煤层富含气段; 进一步利用沉积相探索成煤母质类型及其对煤层气高产富集控制作用...