煤层气井压裂增产技术

作者&投稿:褒先 (若有异议请与网页底部的电邮联系)
油水井增产增注措施是什么?~

采油井或注水井,由于某些因素,使井底附近的油层堵塞,结果使油井产量降低,甚至不出油,或注水井注不进水,影响油层压力和水驱油效果,降低油层采收率。在这种情况下,人们提出了改造油层的两项技术措施:压裂和酸化。
一、压裂
压裂,也称水力压裂,是利用地面高压泵组,以超过地层吸收能力的排量将高黏液体(压裂液)泵入井内,在井底产生高压。当该压力超过地层破裂压力时,就在井底产生一条或数条裂缝。然后将带有支撑剂的压裂液注入裂缝中,停泵后,就可在地层中形成具有足够长度、一定宽度和高度的不再闭合的裂缝。这种填砂裂缝具有很高的导流能力,从而大为改善近井地带油气的渗流条件,达到油井增产或水井增注的目的。
近年来,随着技术水平不断提高,水力压裂已成为低渗透储集层改造和增产、增注的重要手段。
(一)压裂液
压裂液是水力压裂改造油气层过程中的工作液,起着传递压力、形成和延伸裂缝、携带支撑剂的作用。压裂液及其性能与造缝尺寸的大小和裂缝的导流能力有着密切的关系,所以,压裂液是影响压裂效果的重要因素。
压裂液是压裂施工液的总称。根据压裂液在压裂过程中不同阶段的作用,可分为:
清孔液——5%HCl和0.2%的表面活性剂水溶液与堵球配合,疏通压裂井段射孔孔眼。
前垫液——对水敏、结垢或含蜡量高的地层进行压裂时,需要提前泵注黏土稳定剂、除垢剂或清蜡剂;同时,这段液体还可以对高温、深井地层起到降低地层温度的作用。
前置液——一般用不含支撑剂的压裂液作前置液,用以压开地层,降低地层温度和延伸裂缝,为携砂液进入裂缝准备空间。
携砂液——用来进一步扩伸裂缝,携带支撑剂进入裂缝,填铺高导流能力的砂床。携砂液是完成压裂作业、评价压裂液性能的主体液。
顶替液——用来将携砂液全部顶入地层裂缝,以免沉砂井底。顶替液量为井筒容积,不能过量顶替。
随着压裂工艺水平的不断提高,性能优越的压裂液也不断涌现。现在经常使用的压裂液有水基压裂液、油基压裂液、乳状压裂液、泡沫压裂液等。尤其近十几年发展起来的水基冻胶压裂液具有黏度高、摩擦阻力低及悬砂性能好的优点,现已成为国内外使用最广泛的压裂液。
(1)活性水压裂液(水基):在水溶液中加入表面活性剂的低黏压裂液。此压裂液配制简单、成本低廉、黏度低、滤失量大、携砂能力弱,适用于浅井低砂量、低砂比小型解堵压裂和煤层气井压裂。
(2)稠化水压裂液(水基):以稠化剂及表面活性剂配制的黏稠水溶液。稠化水压裂液比活性水压裂液黏度有所提高,携砂能力稍强,降滤失性能稍好,主要用于低温(小于60℃)、浅井(小于1000m)和低砂比(小于15%)的小型压裂。
(3)水基冻胶压裂液(水基):这是一种有弹性、不黏手和容器的胶冻状压裂液。水基冻胶压裂液携砂能力很强,摩擦阻力极小,是一种较理想的压裂液。
(4)稠化油压裂液(油基):是高分子聚合物溶于油中配成的压裂液。其基液为原油、汽油、柴油、煤油、凝析油。其优点是黏度高、悬砂能力强、滤失量小、不伤害油层;缺点是成本高、流动时摩擦阻力高,且黏度随温度升高降低很快,因此只适用于低压、亲油、强水敏地层。
(5)乳化压裂液:为一种液体分散于另一种与它不相混溶的液体中形成的多相分散体系。以液珠形式存在的一相称为分散质(或称内相、不连续相);起分散作用的一相称为分散介质(或称外相、连续相)。用作压裂液的乳状液中,一相是水或盐水溶液、聚合物稠化水溶液、水冻胶溶液、酸液以及醇液;另一相则是原油、成品油、凝析油或液化石油气。此外,体系中还须加入有利于形成稳定乳状液的表面活性剂。乳化压裂液的特点是:具有一定的黏度,滤失量低,对地层伤害小,但其摩擦阻力一般高于水或油,适用于水敏、低压地层。
(6)泡沫压裂液:是气体分散于液体中的分散体系。为了使泡沫稳定,通常加入起泡剂。体系中气相为CO2、N2、空气;液相为稠化水、水冻胶、酸液、醇或油;起泡剂多为非离子型表面活性剂。这种压裂液的特点是:摩擦阻力损失小,滤失量少,返排速度快,携砂能力强,对地层伤害小,适用于含气砂岩或页岩地层,低渗、低压、水敏性地层。
(二)支撑剂
在水力压裂中,支撑剂的作用在于充填压裂产生的水力裂缝,使之在岩石应力作用下不再重新闭合,且形成具有一定导流能力的流动通道。显然,被支撑裂缝的长度、宽度越大,裂缝的导流能力越强,裂缝的增产效果越好。
压裂用的支撑剂可大致分为天然、人造和天然改性三大类型。天然的以石英砂为代表,人造的以陶粒为代表,天然改性的以树脂包层砂为代表。
1.石英砂
石英是一种分布广、硬度大的稳定性矿物,也是首先得到广泛应用的支撑剂,至今在国内外的用量仍然居于首位。石英砂硬度大,性脆,遇硬地层破碎后将大大降低裂缝的导流能力,遇软地层又容易嵌入裂缝里面。但石英密度低,便于施工泵送;价格便宜,容易获得;圆球度好,导流能力强,仍为目前国内外最常用的支撑剂。
2.人造陶粒
自20世纪70年代末以来,随着向深层、致密层的勘探开发的需要,我国先后研制出喷吹的铝矾土高强度支撑剂、中高密度高强度烧结铝矾土陶粒和低密度中等强度烧结铝矾土陶粒。我国将这些烧结或喷吹形成的人造支撑剂统称为陶粒,其主要特点是:具有很高的强度,具有抗盐、耐温性能,破碎率低;但其相对密度较高,对压裂液的性能及泵送条件都提出了更高的要求,且加工工艺复杂,成本较高。
3.树脂包层砂
树脂包层砂是采用一种特殊工艺,将改性酚醛树脂包裹在石英砂的表面,并经热固处理制成的一种支撑剂。按树脂的包裹方法,可分为预固化和(可)固化两种包层砂,它们在压裂中承担着不同的任务。前者是在石英砂的表面包了一层树脂,即使压碎了包层内的砂子,外面的树脂仍可以将碎块、微粒包裹在一起,从而保持裂缝有较高的导流能力;后者是在石英砂表面上事先包裹一层与压裂层温度相匹配的树脂,并作为尾随支撑剂置于水力裂缝的近井缝段,当裂缝闭合且地层温度恢复后,这种(可)固化的树脂包层砂先在地层温度下软化成玻璃球状,然后由软至硬地将周围相同的(可)固化的树脂包层砂胶结起来,这样在裂缝深处与井筒地带形成一道“屏障”,起到防止缝内支撑剂反吐回流的作用。
除上述类型外,20世纪50~60年代曾使用过的金属铝球、塑料球、核桃壳与玻璃球等支撑剂,由于受自身的缺点所限制,已被更好的支撑剂替代,现已不再使用。
(三)压裂工艺
压裂工艺包括压裂井(层)的选择、压裂工艺方式的选择、压裂施工参数的优化设计等一系列工作。在压裂液、支撑剂及压裂设备都已确定的情况下,压裂效果的好坏取决于压裂工艺。
各地区的油层性质、压力、温度等条件不同,完井方法、技术设备条件也有差异,因此,压裂工艺方式也不同。下面介绍几种较为常用的压裂工艺方法。
1.合层压裂技术
油气井的生产层往往是一个层组,压裂时对这个层组的各个小层同时进行施工,就叫做合层压裂,也叫笼统压裂。对于裸眼完成的井,其裸眼段由于难以分小层,常用此方法压裂。具体施工时又分为油管压裂、套管压裂和油套管同时压裂三种情况。油管压裂是将压裂液由油管挤入井底,并采取了带水力锚和套管加平衡压力等保护措施;套管压裂是井内不下油管,装好井口直接压裂;油套管同时压裂是将油管和套管出口各接一些压裂车,同时向井内注入压裂液,从套管加砂。
2.分层压裂技术
压裂施工中,当目的层有多层时,为了达到彻底改造的目的,要采用分层压裂技术。
目前国内外应用较为广泛的一种压裂技术是封隔器分层压裂。它是通过封隔器分层管柱来实现的。封隔器是分层压裂管柱的关键,它的作用是将目的层与上、下油层隔离开来,阻止压裂液进入上、下油层,使目的层独立地与压裂管柱内压力系统连接起来。对最下面一层,可以用单封隔器进行压裂;对射开多层的井,可用双封隔器对其中任意层进行压裂;对射开多层的深井,也可以用“桥塞+封隔器”分层压裂。
二、酸化
酸化是将按要求配制的酸液从地面经井注入到地层中,以用于除去近井地带的堵塞物,恢复地层的渗透率,或通过酸、岩的化学反应,腐蚀油层中的某些成分,恢复或提高油层的渗透能力的一种化学增产增注措施。
(一)酸液类型
酸化时采用何种酸液,必须根据酸化井地层和堵塞物的特点、措施目的和施工要求进行选择。
1.盐酸
酸化时,盐酸的浓度一般在6%~15%,但随着高效缓蚀剂的出现,可直接使用工业盐酸(浓度约30%)酸化。使用浓盐酸可以酸化深层,减少地层水的稀释,生成较多的CO2,利于残酸的排出。
盐酸可溶解堵塞水井的腐蚀产物,从而恢复地层的渗透率,例如:

盐酸也可溶解油水井及地层中的碳酸盐矿物(方解石、白云石等),例如:

反应物可溶于水,它们可随废酸排到地面,这样就可增大地层的孔道,提高近井地带的渗透率。
如果酸化高温井或深井,就不能直接用盐酸,因为反应速度太快,无法作用于深远地层。这时可用潜在酸,所谓潜在酸,是指那些在一定条件下能产生酸的物质,如:

2.氢氟酸
氢氟酸(HF)可以溶解堵塞地层或胶结地层的黏土(主要是蒙脱石、伊利石、高岭石等矿物),也可溶解砂岩中的硅质物质(石英和长石),从而恢复或提高地层的渗透率。


由于氢氟酸有上述性质,所以对有黏土堵塞或黏土胶结的砂岩地层进行酸化时,可加入一定数量的氢氟酸来提高酸化效果。油田常用的土酸酸化液,就是6%~15%的盐酸与3%~15%的氢氟酸的混合酸。
并不是任何情况下都能使用氢氟酸的。对于碳酸盐岩(石灰岩、白云岩)地层,如果用氢氟酸,就会产生堵塞地层的沉淀。

根据地层条件、现场施工的实际情况,以及酸化目的的不同,可采用不同的酸化液进行酸化,如多组分酸、乳化酸、稠化酸、甲酸和乙酸等,都能起到不同的酸化效果。
(二)酸液添加剂
酸化用的酸液中,为了实现某一特定的目的所加入的化学物质称为酸液添加剂。常用的酸液添加剂主要有缓速剂、缓蚀剂和铁离子稳定剂。
1.缓速剂
用来降低酸、岩反应速度,提高酸化半径的物质称缓速剂。加有缓速剂的酸液称为缓速酸。常用的缓速剂有表面活性剂和增稠剂。
表面活性剂如十二烷基磺酸钠等,它们吸附于岩石表面上,疏水基团向外阻止了酸液与岩石的接触反应,降低了反应速度。另外,表面活性剂在井底附近地层吸附量大,酸、岩反应速度小;当酸液进入到地层深部,表面活性剂浓度减小,吸附量小,酸、岩反应速度大。表面活性剂的加入也有利于残酸返排。表面活性剂加量在1%左右。
增稠剂常用黄原胶、聚乙二醇(低温时用)、高分子聚合物(如聚阳离子化合物)。增稠剂的加入,使酸液黏度提高,降低了酸液中H+向岩石表面的扩散速度,从而降低了酸、岩反应速度。
2.缓蚀剂
用来降低酸液对井下金属设备(如油管、套管)的腐蚀速度的化学物质称为缓蚀剂。缓蚀剂分有无机缓蚀剂、有机缓蚀剂。油田常用的是含有O、S、N杂原子的有机缓蚀剂,如7701、咪唑啉等。
3.铁离子稳定剂
当酸、岩反应后,酸液pH值降低,酸液中铁盐(尤其是Fe3+)水解析出沉淀,造成二次堵塞地层孔隙,因此常在酸液中加入铁离子稳定剂。常用的铁离子稳定剂有两类:一类是络合剂,如柠檬酸、EDTA钠盐等;一类是还原剂,如异抗坏血酸、亚硫酸等。
(三)酸处理方式和酸化技术
常用的酸处理方式有常规酸化和压裂酸化两种。
常规酸化是注酸压力小于地层的破裂压力的酸化,以解除井底附近地层的堵塞作用,所以也称为解堵酸化。
压裂酸化是注酸压力大于岩石破裂压力的酸化,即在压裂的基础上进行酸化,一方面靠水力作用形成裂缝,另一方面靠酸液的溶蚀作用把裂缝的壁面溶蚀成凹凸不平的表面。停泵卸压后,裂缝壁面不能完全闭合,具有较高的导流能力。
近些年来,随着石油工业的发展,酸化技术也越来越先进。除普通盐酸、土酸酸化外,还出现了泡沫酸酸化、胶束酸酸化、乳化酸酸化、稠化酸酸化和化学缓速酸酸化等技术。
(四)残酸液返排
酸化施工结束后,停留在地层中的残酸水活性已基本消失,不能继续溶蚀岩石,而且随着其pH值的升高,原来不会沉淀的金属会相继产生金属氢氧化物沉淀。为了防止生成沉淀二次堵塞地层孔隙,影响酸化效果,一般说来,应尽快把残酸尽可能排出。为此,应在酸化前就做好排液和投产的准备工作,酸化施工结束后立即排液。
残酸流到井底后,如果剩余压力(井底压力)大于井筒液柱回压,可依靠地层能量进行放喷排液;如果剩余压力低于井筒液柱回压,就需要用人工方法将残液从井筒排至地面。目前,常用的人工排液法有:一是降低液柱压力或降低液体密度,如抽汲法、气举法;二是增注液体助喷,如增注液体二氧化碳法和液氮法等。

  影响煤层气井压裂效果的地质因素有:
  (1)煤的变质程度;
  (2)围岩和煤层的渗透性;
  (3)地质构造;
  (4)地下水活动;
  (5)煤田暴露程度;
  (6)煤层埋藏深度。
  煤层气是指储存在煤层中以甲烷为主要成分、以吸附在煤基质颗粒表面为主、部分游离于煤孔隙中或溶解于煤层水中的烃类气体,是煤的伴生矿产资源,属非常规天然气,是近一二十年在国际上崛起的洁净、优质能源和化工原料。俗称“瓦斯”,热值是通用煤的2-5倍,1立方米纯煤层气的热值相当于1.13kg汽油、1.21kg标准煤,其热值与天然气相当,可以与天然气混输混用,而且燃烧后很洁净, 几乎不产生任何废气,是上好的工业、化工、发电和居民生活燃料。煤层气空气浓度达到5%-16%时,遇明火就会爆炸,这是煤矿瓦斯爆炸事故的根源。煤层气直接排放到大气中,其温室效应约为二氧化碳的21倍,对生态环境破坏性极强。在采煤之前如果先开采煤层气,煤矿瓦斯爆炸率将降低70%到85%。煤层气的开发利用具有一举多得的功效:洁净能源,商业化能产生巨大的经济效益。

绝大多数煤储层渗透率较低,井眼圆柱侧面积作为排气面积远远不够,为有效开发煤层气,必须采取人工增产措施改善储层物性,水力压裂是国内外煤层气井增产的一个重要手段。水力压裂技术是利用地面高压泵组,将压裂液以大大超过地层吸收能力的排量,注入井中,在井底憋高压,当压力大于井壁附近的地应力和地层岩石抗张强度时,便在井底地层附近产生裂缝,继续注入带有支撑剂的携砂液,裂缝向前延伸并填以支撑剂,关井后裂缝闭合在支撑剂上,从而在井底附近地层内形成具有一定几何尺寸和高导流能力的填砂裂缝,达到增产的目的。在美国,除粉河盆地和圣胡安盆地甜点区使用洞穴完井技术以外,黑勇士、皮申斯、尤因塔、拉顿、中阿巴拉契亚、北阿巴拉契亚等盆地,均使用水力压裂增产技术进行煤层气开采。在中国,绝大部分井采用直井射孔压裂完井。依据压裂液选用类型,水力压裂技术可以划分为冻胶压裂、清水加砂压裂、无砂清水压裂等。

如果单层厚度较小,但煤层分布比较集中,可以进行多层压裂后合采。如在黑勇士盆地,单煤层厚度一般小于1.2m,无法进行单独开采,因此,对各层进行压裂,然后合采,一般煤层气井压裂2~5次。同时,为了解决煤粉堵塞等问题,许多气井还要进行多次重复压裂,以便恢复气井产能。



准南低煤阶煤层气研究进展及认识
答:20世纪90年代,美国又提出“生物型或次生煤层气成藏”理论,并在尤因塔、粉河盆地上白垩统煤系地层勘探取得成功,实现了低煤阶煤层气的商业性开发。加拿大注重发展连续油管压裂、二氧化碳注入、水平羽状井等增产技术。澳大利亚发展了针对低渗透特点的地应力评价理论和水平井高压水射流改造技术,均实现了煤层气开发突破。同时...

山西省发现千亿方大气田,对于汽油的价格有影响吗?
答:临兴致密气田与煤层气、页岩气一样,都属于非常规天然气。由于其成因、成藏机理与常规天然气不同,开发难度较大,需要一些特殊的技术才能开采出来。例如,煤层气需要采用排水抽采技术,页岩气需要大规模水力压裂技术,临兴致密气田目前采用压裂增产技术开采。在建设过程中,临兴气田探索勘探开发一体化模式...

煤储层压裂裂缝长期导流能力实验研究及影响因素分析
答:因此煤层压裂液体系在选用冻胶时,需要充分研究其在煤层低温条件下的高效破胶技术,同时也可以尝试加入化学物质来降解、氧化冻胶残渣,减少残渣对水力裂缝的堵塞,从而达到增加裂缝渗透性,提高单井产量的目的。 4.5 复杂裂缝对导流能力的影响 为了描述煤层水力压裂中形成的“T”形、“I”形等复杂裂缝对导流能力的影响,本...

晋城无烟煤CO2&N2-ECBM数值模拟研究
答:摘要:基于晋城无烟煤储层地质条件下的储层和煤岩参数,结合晋城无烟煤煤层气藏直井生产必须压裂增产的实际,以200m为产注井距,使用澳大利亚联邦科工组织的煤层气储层数值模拟软件(SIMED Win)模拟了不同气体组分条件下(CO2:N2=90:10,75:25,50:50)的煤层气增产和二氧化碳埋存过程。研究结果表明,采用CO2和N2混合...

基于煤层压裂模拟的水饱和煤样单轴力学试验研究
答:水力压裂改造措施是国内外煤层气井增产的主要手段。而我国的煤层气储层普遍属于低渗透煤储层,研究表明:我国煤层渗透率大多小于50×10-3μm2(张群,2001)。因此,目前国内的煤层气井采用最广泛的完井方法是压裂完井,煤层和砂岩的岩性特征有很大的区别,压裂施工中裂缝在煤层中的扩展规律与在砂岩中的扩展规律也不相同,...

自来水燃烧的应对方法
答:8年内实现现场试验。这意味着,在2020年之前,很难出现一种成熟技术替代水力压裂。面对发展迅猛的非常规油气开发,水力压裂的争议或许还将长期存在。 水力压裂技术由于其低成本的特点仍是未来一段时间内油气增产的首选。其他压裂技术将会作为补充,在页岩气藏、煤层气藏等特殊油气藏增产中发挥作用。

非常规油气勘探开发技术展望
答:水平井技术、大规模水力压裂和微地震裂缝成像技术,极大地推动了Barnett、Woodford和Fayetteville页岩气的开采。裸眼洞穴完井技术在煤层气开发,特别是高渗透率、超高压的煤层气开发中获得了很好的应用效果。叠前地震反演和蚂蚁算法追踪技术是有效识别裂缝、寻找有效储层的关键技术。随着社会的发展,环境保护将...

开发利用技术
答:目前已经施工的多分支水平井超过30口,大幅度提高了煤层气单井产量。另外,煤层气压裂裂缝监测技术、测井评价技术、煤层气变排量和变液性有效压裂技术都有了较大进展,绳索取心技术发展较快。“十五”期间,推广应用大地电位测量、同位素示踪、微地震、地球物理测井等技术,提高了对煤层含气量、水分、灰分...

页岩气的技术进度
答:此次探讨中,各方专家逐步形成一致观点:中国页岩气开发应当推进,更应当保持谨慎态度。相关专家表示,中国的页岩气储藏深度远远高于美国,而且地质复杂程度也超过美国,加上多数页岩气开发地区人口密集,从技术和社会两方面来讲,开发难度都很大,应当谨慎推进。由于开采页岩气所需的水力压裂技术需要大量的水资源,而我国页岩气...

煤层气U 型井钻完井新技术研究
答:研究结果表明: 水平井煤层段采用 PEC 筛管完井能有效保护井壁稳定性,减少井眼坍塌,即便排采过程中井眼发生局部垮塌,筛管仍能为煤层气、水提供良好的流动通道; 充气欠平衡钻井技术可有效减少煤储层的污染和损害,保护煤储层; 沿煤层顶/底板钻水平井可有效避免粉煤、构造煤等井壁稳定性问题,定向射孔分段压裂可有效...