机组在运行时出现甩负荷有哪些原因,现象,该怎么

作者&投稿:兴熊 (若有异议请与网页底部的电邮联系)
发电机甩负荷之后的现象以及产生这些现象的原因? 感谢回答的高手,不要蒙事的。~

甩负荷分为两种,一种是主动甩负荷:当电网提供的有功大大小于系统需要的有功,主动甩掉部分不重要的负荷,提高电网供电质量。一种是故障甩负荷,发生这种事故的原因除了电网不正常之外,发电机的主开关跳闸、汽机主汽门脱扣等都是引起该事故的原因。当电站突然甩去大量负荷时,二回路蒸汽流量急剧下降,使一回路冷却剂温度及压力迅速上升。这就是甩负荷事故。   在水电站中甩负荷是一种常见的现象。水轮发电机组发生甩负荷后,巨大的剩余能量使机组转速上升很快,调速器迅速关闭导叶,并经过一段时间的调整,重新稳定在空载工况下运行。在甩负荷过程中,除了调节保证计算所关心的最大转速上升值和最大水击压力上升值外,还要对甩负荷动态过程品质指标的优劣进行考核。   1.1、转速上升时间:机组甩100%额定负荷后,由于剩余能量巨大,转速上升很快。正常情况下,调速器以最大速度关闭导叶到零开度,转速上升时间tM=tc+tn,其中:tc为调速器迟滞时间,取决于调速器的死区大小、机组转速的上升速率以及运行工况等,调速器在非限制条件下,tc一般大约在0.2s~0.3s。   tn为调保计算中的升速时间,被定义为自导叶开始动作到最大转速所经历的时间。升速时间tn取决于水轮机主动力矩和机组惯性力矩之比,即与机组特性有关。采用比转速(ns)统计法有:为相对升速时间,τn=0.9-0.00063•ns。可以看出,相对升速时间τn随比转速的增加而减少,即低比转速、高水头水轮机相对升速时间大,高比转速、低水头水轮机相对升速时间小。T′s为导叶直线关闭时间。 由于迟滞时间tc较升速时间tn小得多,一般情况下,可将转速上升时间tm等同于调保计算中的升速时间tn看待。根据统计资料大多机组的tm=(2~6)s 。   1.2、转速下降时间(tD) 它表示机组甩负荷后,导叶直线关闭到零并一直保持到零开度(相当于机组紧急停机)情况下,自最高转速下降到空载转速区域为止的时间,或称为最快转速下降时间。在最高转速之前,机组处于水轮机工况,之后,进入制动和反水泵工况,转轮区的水起阻力作用,再加上机械摩擦阻力矩及电磁阻力矩等,机组转速开始下降。   转速下降时间tD大小取决于水轮机阻力矩和机组惯性力矩之比。当水轮机力矩特性近似为线性时,水力降速阻力矩与升速主动力矩基本对称(如一些可逆式水泵水轮机),并且导叶关闭不受限制时,tD≈tM。但由于导叶开度只能关闭到零位,水对转轮的阻力作用受到限制,转速下降减缓,因此tD>tM。对于低水头、大流量、高比速的水轮机,空载开度较大,在甩负荷过程中,水力升速主动力矩作用时间缩短,水力降速阻力矩作用时间延长。同时由于机组尺寸大、机械摩擦阻力矩亦较大。因而,相对升速时间较小。相反,对于高水头、小流量、低比速的水轮机,空载开度较小,水力降速阻力矩作用时间远小于升速主动力矩作用时间,再加上尺寸小、机械摩擦阻力矩较小,相对升速时间τn较大,此时tD>tM。   由于转速进入大波动范围,主配压阀限幅限制了主接力器的关闭与开启速度,主接力器限幅限制了调速器对水轮机的控制能力的发挥等等。可把甩负荷过程划分为大波动和小波动两个阶段分别对待。大波动过渡过程阶段(转速上升时间tM和转速下降时间tD时段内)与调节保证计算结果有关,而与调速器的调节控制性能无关,这一阶段只要求调速器能正常关闭和开启。转速从大波动到小波动的过渡阶段、以及进入到小波动阶段,甩负荷过程的动态品质才取决于调速器的调节控制性能。   1.3、 转速调整时间(tR) 转速调整时间tR是指转速以最快速率第一次下降到进入空载区域开始到最终进入空载稳定区域所经历的时间。理想情况是当转速以最快速度下降到空载转速区域时,迅速打开导叶到空载开度,使转速不再超出空载稳定区域,此时tR=0。但是,导叶从全关位置打开到空载开度需要一定的时间,在导叶打开的过程中,转速将继续下降,转速必然存在超调现象,即nmin/nreqx=-01,eqh=0.5,Tw=1.0s,Ta=5.0s。   2.1、调速器特性对甩负荷过渡过程影响   机组甩100%额定负荷。辅助接力器型和电子调节器型在对应等效的调节参数情况下,其甩负荷过程曲线形态接近,说明并联结构与串联结构控制效果相差不大。从调节参数的影响看,随着调节参数bt、Td增大,机组开度开启时刻提前,且开启速度放慢,调整时间tR延长,超调量减小。对于转速有超调而未超出空载转速的规定偏差范围,调整时间tR可能缩短。微分时间Tn减小,机组开度开启时刻推后,且开启速度放慢,导致超调增大。从控制方式看,开度给定只从调差环节输入与开度给定从调差环节和软反馈同时输入相比较,在相同的调节参数情况下,后者机组开度会关的更小,能使转速更快下降,而且过渡过程受调节参数的变化影响较小,均存在一定的超调。   2.2、调节对象特性对甩负荷过渡过程影响:采用辅助接力器型调速器。一般取Tw=1.0s、1.5s、2.0s,相应的取Ta=5•Tw,T′s=4•Tw,bt=3•Tw/Ta,Td=2•Tw,Tn=1•Tw。从结果中可以看出,最大的转速上升值0.40、最大压力上升值0.36保持不变,最小值也保持不变,各特征点值发生的时间与Tw的大小成比例。在电站设计中,当水流惯性时间常数Tw确定后,根据水击压力上升允许值可计算出导叶直线关闭时间T′s。当T′s选定后,根据转速上升允许值可计算出机组惯性时间常数Ta,并按推荐公式求出调节参数。水流惯性时间常数Tw不但集中体现了调节对象特性,而且最佳调节参数也取决水流惯性时间常数Tw,所以,Tw决定了水轮机调节系统的动态过程形态和调节时间的长短。   2.3、线性与非线性水轮机模型对机组甩负荷结果的影响 采用非线性水轮机的力矩特性M′与流量特性Q′,和线性水轮机。此时,引水系统采用单元引水弹性水击。可以看出,线性与非线性水轮机甩负荷过程曲线存在一定的差异,主要表现在以下两方面:二者转速峰值发生的时间不同。这是因为在线性水轮机的力矩特性在整个甩负荷过程中不变,转速峰值发生在水轮机力矩等于零时刻,即mt=ey•(y-yk)+ex•X+eh•=0。而非线性水轮机的力矩特性在甩负荷过程中是变化的,转速峰值也发生在水轮机力矩等于零时刻,即M′=0。其转速峰值比线性超前,对应的开度大于空载开度,与实际情况比较接近。二者压力变化曲线不同。同理,线性的流量特性在甩负荷过程中是不变的,而非线性的流量特性则是变化的,从而造成压力变化曲线不同。特别是在导叶处于全关位置时,非线性的压力曲线出现了振荡。这是由于在非线性当导叶开度为零时,水轮机流量等于零,引水管道中压力将产生振荡,振荡周期与弹性水击模型中的水击相长tr=2L/a成比例。而线性的流量特性Q′=eqy•(y-yk)+eqx•X+eqh•h在导叶开度为零时,流量Q′并不一定为零,并且还随转速X、水头H变化,相当于导叶开度不为零的情况,水轮机转轮在整个引水管道中起阻尼作用,吸收管道内的能量,因而不会产生压力振荡。   水轮机在甩负荷过程中,一般要经历水轮机工程、制动工况及反水泵工况。目前仅有极少数水轮机有全特性曲线,而综合特性曲线仅反映水轮机工况。采用水轮机特性预估的方法可以计算出水轮机的力矩特性和流量特性,但其结果仅在高效率区与实验特性曲线相近,高效率区之外存在缺陷。水轮机的高效率区特性具有一定的变化规律,不同水轮机的非线性在高效率区之外则存在较大差异,不易掌握其规律性,在研究调速器控制性能时,希望排除其他不确定因素。在调速器控制方式、调节参数等条件相同的条件下,非线性水轮机模型在高效率工况(水轮机工况)与线性水轮机曲线变化趋势基本一致。因此,用线性水轮机模型来研究机组甩负荷过程中的调速器控制性能所得到的结果具有代表性。   3、 结束语   综合以上分析得出以下结论,甩负荷过程应划分为大波动和小波动两个阶段分别对待,大波动过程仅取决于调节对象特性,而与调速器的控制特性关系不大,因此甩负荷过程中转速上升时间(tM)和转速下降时间(tD)与调速器的控制特性关系不大。小波动过程除了与调节对象有关外,与调速器的控制特性密切相关,因而转速调整时间(tR)和超调量(1-nmin/nr)与调速器的控制特性密切相关;调节参数对甩负荷过程影响较大,在推荐的最佳调节参数条件下,甩负荷过渡过程较好。但由于在常规控制方式情况下不能解决导叶开启时刻与开启速度之间的矛盾,因此很难达到较为满意的结果;开度给定从调差环节和软反馈同时输入的甩负荷过程受调节参数的变化影响较小。由于现场试验次数有限,很难整定出最佳参数,该控制方式对参数变化具有很好的适应性。采用按开度改变软反馈系数控制方式,结合常规调节参数整定,很好地解决了由大波动过程到小波动过程的平稳过渡,由于其算法简单易实现,在实际电站的应用中取得了良好的效果。用线性水轮机模型代替非线性水轮机模型研究甩负荷过程中的调速器控制性能所得到的结果具有代表性。因此现代调速器一般采用线性与非线性相结合的方法,运用与水轮机控制,从而达到最佳调节效果。也是现代调速器的发展方向。

甩负荷试验的目的是校验水轮机调节系统动态特性的品质,考核机组在已选定的空载运行参数下大波动调节过程的稳定性和速动性,最终是考查调节系统动态质量,根据甩负荷时所测得机组转速上升率、蜗壳水压上升率和尾水管真空度等,检查是否满足调节保证计算要求,同时根据试验测得参数绘制调节系统静特性图。

甩负荷,一开始原动机的惯性,输入转矩不变,但是负荷减少,电磁功率减少,不再平衡,转子加速(一般的大型水轮发电机组由于调速系统的作用,机组转速会上升至50至70HZ范围内,但一般不超过57.5HZ),功角变大(引起震荡)。之后由于调速器等作用,减少了原动机出力,转速又回到了正常的50HZ。切割磁力线越快,电压也就越高。这一点从开机过程中不难发现,一般的小型机组(没有励磁系统的那种),在开机时机组转速从0到额定,电压也随之转速从0上升到额定。所以如果转速更快的话,电压也会继续升高,至到过电压动作。通常在甩负荷后,发电机过电压保护会动作。

水轮机调速器怎么判断甩负荷,甩负荷后调速器怎么动作
答:有差特性;有差则随机组负荷的波动,其转速也跟着波动,转速随着负荷的增加而 降低,减少而升高,因此,为一条斜线。水轮机调速器:水轮机调速系统仿真测试仪是针对于水力发电调速系统、水力发电自动准同期系统特性检测而开发的一种综合性测试平台。仪器可以完成水轮机调速系统的空载摆动、空载扰动、甩负荷、...

为什么汽轮机甩负荷,但没有电网解列,还能维持3000转每分钟的转速。为什...
答:逆功率运行,发电机变成电动机,无蒸汽运行时间太长容易损坏汽轮机叶片。

机组从300MW甩负荷至0,汽机怎么处理?
答:机组从300MW甩负荷至0,汽机应按下面方式处理:甩负荷有一种情况是汽机高中调全关,电气锅炉正常,主汽压力飞升,此时应立即将DEH切至“二级手动”将调门开起来,同时锅炉将汽包水位改手动调节,注意虚假水位联系热工查原因。另一种是发电机解列,而汽机锅炉没联跳。此时,汽机会超速,OPC动作,若OPC动作...

电厂的甩负荷是什么意思
答:甩负荷在电力系统中扮演着非常重要的角色,它可以应对电力系统突发性减载的情况,保障电网的稳定运行,减少机组负荷,避免过载损坏设备。特别是在电网大规模故障、恶劣天气和高温天气等突发情况下,甩负荷会被广泛应用,对保障电网和供电部门的运行安全起到至关重要的作用。甩负荷虽然是保障电网稳定运行的手段...

汽轮机在什么情况下方可进行甩负荷试验?合格标准是什么?
答:(2)试验应在锅炉和电气方面设备正常情况下,各类安全门调试动作可靠。(3)试验措施全面并得到调度或负责工程师统一批准后方可进行。(4)试验在甩1/2、3/4负荷合格后,方可进行。另外,在试验前应做好人员分工。汽轮机甩负荷试验合格标准。机组在甩去额定负荷后,转速上升,如未引起危急保安器动作即...

甩负荷:当电网提供的有效功率小于系统需要的有功时,主动甩掉部分不重要...
答:对这种措施俗称“甩负荷”。这种措施是由自动设备根据事前拟定的方案,分批次快速自动完成。直到电网达到稳定。正常情况下,当电网的供电能力小于负荷需求时,电网的电压及频率也会下降,这会影响电力用户的生产,降低产品质量甚至会引发事故。在没有备用电力容量投入电网的情况下,只有仃止一部分用户用电,...

汽轮机额定负荷下甩负荷,发电机能不能只能带厂用电
答:不是一回事,汽轮机甩负荷时指汽轮机不进气或者说是进不去气。而发电机的甩负荷时指发电机的励磁系统出问题从而减少发电量。这是我个人的理解,希望对你有帮助

发电机甩负荷 电气要做些啥
答:发电机在运行当中突然甩负荷。如果不是带满负荷,过速保护未动作。那么发电机保持空载状态,不需要做任何电气措施。各部检查无异常后,可认为是开关误跳,直接并网。若发电机过速保护动作跳闸,检查停机动作是否正常。如不正常,手动帮助停机。发电机做进人措施(也叫发电机隔离措施),检查过速后主设备损坏...

电厂330MW机组甩负荷 为什么甩一半负荷比负荷全甩危险?
答:负荷全甩,发电机保护会动作足够快,而甩一半负荷,可能会导致保护动作有延时,所以对发电机的危害更大。

发电机试运行为什么要做甩负荷试验
答:甩负荷试验应该就是负荷从100‰突然降到零。发电机电力输出是由动力机的机械功转换而来。当负荷发生变时,会使转速发生变化需通过调速机构减小油门使转速迅速稳定、输出电压频率变化不大。甩负荷应是动力变小的极限试验。