(八)阴极发光能谱

作者&投稿:别胡 (若有异议请与网页底部的电邮联系)
仪器分析包括什么?~

仪器分析包括扫描电镜、电子探针波谱及能谱分析、X衍射分析、阴极发光及荧光显微镜、包裹体冷热台测定等。
1)扫描电镜和电子探针波谱及能谱分析电子束轰击在样品上能产生各种信息,包括二次电子、背散射电子、X射线、阴极发光、透射电子等(图2—1)。
接收二次电子,背散射电子成像的仪器为扫描电子显微镜—简称扫描电镜;接收X射线并检测X射线能量强度的仪器为能谱仪;接收X射线并检测X射线波长的仪器为波谱仪;接收阴极发光进行检测的仪器为阴极发光显微镜。
扫描电镜、电子探针波谱及能谱仪对储层及成岩作用研究。
(1)碎屑岩储层。各种自生胶结物分布方式。(图2—2)各种自生胶结物有孔隙衬垫式、孔隙充填式、嵌晶式及加大式四种胶结方式。
(2)碎屑岩储层。自生矿物类型、特点及成分:
①粘土矿物有伊利石、高岭石、埃洛石、蒙皂石、绿泥石、伊/蒙混层、绿/蒙混层等(见表2—5);②碳酸盐类自生矿物包括方解石、白云石、铁白云石、菱铁矿、片钠铝石等;③硅质胶结物,包括自生石英、无定型的蛋白石与玉髓;④硫化物—黄铁矿;⑤沸石胶结物—包括斜发沸石、片沸石、方沸石、钠沸石、浊沸石等。

图2—1 电子与物质的相互作用

图2—2 碎屑岩中胶结物分布方式

表2—5 粘土矿物形态特征、晶体结构及元素成分

表2—5 粘土矿物形态特征、晶体结构及元素成分(3)碎屑岩储层,石英和长石次生加大。自生石英及自生长石加大可以分为三个阶段:Ⅰ、Ⅱ、Ⅲ。
(4)碎屑岩孔隙类型及储集性能识别标志:
碎屑岩孔隙可以分为粒间孔隙、特大孔隙、铸模孔隙、组分内孔隙及裂缝孔隙五种,可建立原生及次生粒间孔隙的识别标志。
2)X射线衍射仪X射线衍射方法被广泛地应用于结晶学及矿物学研究。在储层测试中使用多晶物质的X射线衍射,要求样品是微细的粉末状态或是微细晶粒的聚合物。
(1)制样方法及分析流程。
①粘土分离。X射线的分析方法主要侧重于粘土分离。一般来讲粘土分离包括采样、选样、称样、碎样、洗油、蒸馏水浸泡、湿磨、制备和提取悬浮液、离心沉淀烘干、研磨、称重和包装等步骤。
②制样方法。针对不同矿物、不同的分析目的以及样品量的多少采取不同方法。
a.压片法:适用于全岩分析。
b.定向片法:样品板用玻璃戴片,面积为25×27mm,样品量为40mg。
N片 把40mg粘土悬浮液均匀地铺在水平旋转的戴玻片上。
EG片 对上机分析的N片进行乙二醇饱和处理,目的区分膨胀性矿物是否存在。
550℃片 对EG片在550℃进行2.5小时加热处理,以鉴定绿泥石。
HCl片 重新称样后用HCl处理,然后制成定向片,目的去掉绿泥石而鉴定高岭石。
c.薄片法:直接用薄片做衍射分析,一般用于自生矿物鉴定。
(2)X衍射分析在沉积储层研究中应用。
①粘土矿物定性与定量分析。
对伊利石/蒙皂石混层(I/S)系列。绿泥石/蒙皂石混层(C/S)系列、高岭石、多水高岭石、坡缕石、蛭石等X衍射鉴定见表2—6。
②混层比计算:
指蒙皂石在I/S及C/S中所含比例,用以划分成岩阶段、估算地温、预测生储油层、判断生油门限等。
③全岩X射线定性及定量分析。
主要鉴定非粘土矿物:a.沸石类矿物,可用来确定沉积环境及古地温;b.盐类矿物,常见的有石盐、石膏、硬石膏、钙芒硝、无水芒硝、重晶石等;c.碳酸盐类矿物鉴定;d.其它非粘土矿物还有黄铁矿、赤铁矿、石英、长石等。
3)阴极发光显微镜(1)原理。
电子束轰击到样品上,激发样品中发光物质产生荧光,又称阴极发光。矿物产生阴极发光原因有几种:a.矿物含有能发光的杂质元素或微量元素(叫激活剂);b.矿物内有结构缺陷。
矿物内的激活剂包括金属元素(Eu2+、Sm2+、Dy2+、Tb3+、Ea3+)以及过渡金属元素(Mn2+、Fe3+、Ca2+、V3+、Ti4+)。
与激光剂相对应能抑制矿物发光的物质叫猝灭剂,如:(Co2+、Ni2+、Fe2+、Ti2+等)。
(2)在储层研究中应用。
①石英的发光特征(表2—7)。
Zinkernagel的研究表明,各种石英颗粒的发光特征是在母岩形成过程中获得的,代表其岩石形成时的温度条件,三种不同发光类型正好反映了三种不同成因的石英(表2—7)。
②碳酸盐矿物发光特征(表2—8),还可以通过残余碳酸盐胶结物分布来判断次生孔隙。

表2—6 粘土矿物的X射线鉴定表

续表

表2—7 石英发光类型与岩石类型及温度之间的关系(据Zinkemagel,U.,1978)
③其它应用:a.碎屑石英原始状态及成岩变化观察,石英颗粒的压碎及愈合作用研究、推断成岩顺序;b.研究晶体生长环带及胶结物世代;c.恢复原岩结构;d.对储层中微裂缝进行研究。
4)荧光显微镜(1)原理。
荧光显微镜是以紫外光为光源、紫外光激发储油岩石中能够发光的烃类物质产生荧光。观察分析这些发光物质本身的变化及其与岩石结构、构造的相互关系,从而判断有机质类型、变质程度、有效储集空间、油气运移等一系列有关石油地质问题。
(2)荧光显微镜鉴定内容。
①沥青发光颜色、波长定量与成分关系。
为解决这问题选用了标准油样测定其发光颜色与波长关系,并确定属何种沥青(表2—9)。

表2—8 各类碳酸盐矿物的元素组成及其它特征(2)发光强度定量。
发光强度主要反映岩石中油的含量,岩石中油的含量越高,则油的荧光发光强度也越大,在荧光图像处理中,用亮度这个数值来定量表示沥青发光强度。
③含油范围定量。
a.各种沥青含量(油质、胶质、沥青质)。
b.含油面积比,此含油面积比在一定程度上反映了含油岩石中含油的范围。可近似代替孔隙含量,但该数值比孔隙含量高,因为还包括油浸染的范围。

表2—9 沥青的发光颜色、波长与成分5)包裹体测定包裹体是矿物形成过程中被捕获的成矿介质,被称为成矿流体的样品。它相当完整地记录了矿物形成的条件和历史,是矿物最重要的标型特征。
(1)包裹体的测定流程。
矿物流体包体的测试技术方面,目前主要开展了偏光和荧光显微镜鉴定、显微冷热台测试、爆裂—色谱仪测试、多项联合装置测试等几个项目的研究,取得了包体流体的均一温度(Th)、盐度(S)、酸碱度(pH)、氧化—还原势能(Eh)和包体(群体)有机组分、包体(单体)有机组分以及包体(群体)气体无机成分等多种参数。
(2)包裹体的测定意义。
包裹体研究除用均一法及冷冻法测定包裹体流体的形成温度、压力及盐度、密度、pH、EH值,还开展了包体成分测定、同位素组成,尤其是烃类(包括液体烃类)包体成分。除用包体集合体进行成分测定以外,还用激光拉曼光谱仪连接色谱、质谱仪对单个包体成分进行测定。流体包裹体记录了烃类流体和孔隙水的性质、组分、物化条件和地球动力等条件。对储集岩成岩矿物中流体包裹体进行类型、特征、丰度、组分等对比研究,了解盆地流体(烃类和水)的动力状态和相对时间,确定烃类运移的时间、深度和运移相态、方向和通道,可为储层的孔隙演化史、油气运移史、构造运动史的研究提供最直接、最可靠的地质信息资料。对储集岩中固体烃(固体沥青)的分析可以提供油气藏被改造、破坏的信息。
各类仪器分析见表2—10。

表2—10 各类仪器原理及在储层研究中的意义

评价的仪器分析包括扫描电子显微镜分析、X衍射分析、阴极发光、荧光显微镜和包裹体冷热台测定等。它们也是储层评价中十分重要的基本分析项目。相对应的各级分析标准方法为:GB/T18295—2001“油气储层砂岩试样扫描电镜分析方法”、SY/T6189—1996“岩石矿物能谱定量分析方法”、SY/T5163—1995“沉积岩黏土矿物相对含量X射线衍射鉴定方法、”SY/T5983—1994“伊利石/蒙皂石间层矿物X射线衍射鉴定方法”、SY/T5614—1993“岩石荧光显微镜鉴定方法”、SY/T5916—1994“岩石试样阴极发光鉴定方法”、SY/T6010—1994“沉积岩包裹体均一温度和盐度测定方法”。
72.9.2.1 油气储层砂岩试样扫描电子显微镜分析方法
定义
孔隙由岩石实体部分所包围的未被固体碎屑颗粒、杂质及胶结物充填的空间。
面孔率观察视域中孔隙和喉道面积占视域面积的比(%)。
喉道连接两相邻孔隙之间的狭窄通道。
碎屑颗粒主要是指构成砂岩的粒状原始物质(包括石英、长石及岩屑等)。
胶结物以化学沉淀方式形成于粒间孔隙的自由矿物。
杂基以机械方式沉积下来的细粒碎屑物质。
方法提要
根据不同类试样及分析鉴定要求进行制作。对石油地质试样在电镜观察前要镀一层导电膜。调整好扫描电子显微镜,束流要稳定,电子束合轴良好,使仪器处于最佳状态。确定仪器处于正常稳定工作状态后,即可进行试样的观察,鉴定和测量。内容包括形貌观察、孔隙和喉道的特征观察、类型确定,以及测量面孔隙和喉道大小;观察胶结物类型及产状等。
仪器和装置
扫描电子显微镜附图像分析软件。
X射线能谱仪。
实体显微镜具反射、透射光功能。
真空镀膜机或溅射仪。
烘箱。
试剂和材料
三氯甲烷。
乳胶、导电胶或双面胶带。
金丝。
专用喷镀碳棒。
试样制备
洗油含油试样需用三氯甲烷通过抽提法或浸泡法洗油。
试样选择把有代表性、平整的新鲜断面作为观察面。
上桩用乳胶、双面胶带或导电胶把试样粘在试样桩上。
干燥自然晾干或放入小于50℃恒温箱中烘干。
除尘用洗耳球吹掉表面灰尘。
镀膜在真空镀膜机中镀碳或溅射仪中镀金。
分析步骤
扫描电子显微镜开机,确定仪器处于正常工作状态后,即可按如下步骤分析试样。
1)形貌观察。在20~200倍镜下,观察试样全貌,包括碎屑颗粒、胶结物、杂基大小和分布、孔隙发育情况,并拍摄照片。
2)孔隙。观察孔隙、孔隙的特征,确定孔隙类型,测量孔隙大小。用仪器提供的电子标尺测量一般孔隙短轴最宽处的距离,作为该试样的孔隙直径值。
3)喉道。观察喉道的特征,确定喉道类型和连通情况,测量喉道的大小。
4)测量面孔率。在50~200倍率下观察孔隙发育情况,选择测量视域,确保视域中有300个以上的孔隙;利用图像分析软件,按灰度设定阈值作面孔率测定,计算阈值范围内的孔隙和喉道的面积与视域面积的百分比;每一个试样在同一放大倍率下,选4个以上视域进行重复测定,取其平均值作为该试样的面孔率。
5)胶结物。观察胶结物类型及产状。在扫描电子显微镜下观察胶结物的形态,用能谱仪测定胶结物的特征元素。胶结物主要为黏土矿物,碳酸盐、硫化物、硫酸盐和沸石等矿物。
6)成岩后生变化。主要在扫描电子显微镜下观察石英次生加大,长石次生加大,溶蚀淋滤和转化及交代等成岩后生变化情况。
72.9.2.2 沉积岩黏土矿物相对含量X射线衍射分析方法
方法提要
根据斯托克斯法则,将黏土矿物采用自然沉降法进行分离。吸取粒径小于2μm的悬浮液进行制片,针对不同矿物、不同的分析目的以及试样量多少有不同的制片方法。压片法适用于全岩分析;自然定向片(N)作黏土矿物X射线衍射的基础分析;乙二醇饱和片(EG)目的是区分膨胀性矿物是否存在;550℃加热片鉴定绿泥石;盐酸片目的是去掉绿泥岩而鉴定高岭石;薄片法一般用于自生矿物鉴定。调节X射线衍射图分析仪,待仪器稳定后,将制备好的试样片子,上机进行定性和定量分析。
仪器和设备
多晶X射线衍射仪测角仪测角准确度优于0.02°;仪器分辩率优于60%,综合稳定度优于±1%。
离心机。
碎样机。
电热干燥箱。
电热水浴锅。
超声波清洗器。
瓷研钵,铜研钵,玛瑙研钵。
高型烧杯,低型烧杯。
标准筛。
高温炉。
试剂和材料
六偏磷酸钠。
EDTA钠盐。
三氯甲烷。
盐酸。
过氧化氢。
乙醇。
氢氧化铵。
氯化钾溶液(1mol/L)。
分析步骤
1)黏土分离。不同岩性试样的黏土分离方法稍有不同。泥岩黏土分离是将试样粉碎至小于1mm粒径,然后放在高型烧杯中,加蒸馏水浸泡,用超声波促进分散,吸取粒径小于2μm的悬浮液即可。砂岩黏土要粉碎后,先将含油砂岩用三氯甲烷抽提至荧光4级以下,再将试样放在高型烧杯中浸泡分散,吸取粒径小于2mm的悬浮液。对于碳酸盐岩黏土分离要用2%~3%的盐酸反复处理至无反应。然后把除去碳酸盐的试样用蒸馏水反复洗涤,使黏土悬浮。
2)定向片制备。
A.干样法。将40mg干样放入10mL试管中,加入0.7mL蒸馏水,搅匀,用超声波使黏粒充分分散,迅速将悬浮液倒在载玻片上,风干。
B.悬浮液法。在离心沉降获得的黏土中加适量蒸馏水,搅匀,吸取~0.8mL悬浮液于载玻片上,风干。
C.抽滤法。将真空泵与抽滤瓶连接。启动真空泵,将浸泡过的微孔滤膜放在漏斗上。分几次倒入悬浮液,每次倒入的悬浮液10min内抽完。待黏土膜达30~40μm厚时取下滤膜,将滤膜反贴在载玻片上,然后置于培养皿中干燥。
3)自然定向片处理。
A.乙二醇饱和片(EG)。用乙二醇蒸汽在40~50℃条件下,将自然定向片恒温7h,冷却至室温。
B.加热片(550℃)。在(550±10)℃条件下,将乙二醇饱和片恒温2h,自然冷却至室温。
4)特殊片制备。
A.盐酸片(HCl)。加6mol/LHCl于40~50mg试样中,在80~100℃水浴上处理15min,冷却后离心洗涤至无氯离子,再用干样法制片。
B.钾离子饱和片(KCl)。称40mg试样放入试管中,加入7mL1mol/LKCl溶液,饱和三次后,用蒸馏水洗涤至无氯离子,用干样法制片。
5)上机分析。按事先优选的工作条件,调整X射线衍射仪,待仪器稳定后,将制备好的各种试样片子上机进行定性和定量分析。
6)X衍射谱图(见图72.19)。
纵坐标:衍射强度,用I表示,s-1。
横坐标:衍射角,用2θ表示,(°)。
峰顶标值:晶面间距,用d表示,10-1nm。
d值是鉴定矿物的基本数据,例如绿泥石的d(001)=14.26×10-1nm,高岭石的d(001)=7.20×10-1nm,蒙皂石向绿泥石转化过程中,其d(001)=17×10-1nm将逐渐减小,直至d(001)=14.26×10-1nm为止。
峰侧符号(hkl):衍射指数。
基线BL:图中的虚线。
背景B:基线与横坐标之间的距离,s-1。
半高宽(FWHM):(°),可用来表示伊利石的结晶度,自生高岭石的半高宽均很小;碎屑高岭石的半高宽则较宽。
峰高H:单位为s-1,常用于定性分析中,对于一种矿物的衍射峰,要换算成相对强度,峰高最大值强度为100,其余按比例换算。
峰面积A:代表积分强度,单位是记数,也可用mm2表示,黏土矿物定量分析中常用。
7)定性分析。常见黏土矿物X射线鉴定特征见(表72.29)。

图72.19 X射线衍射谱图

表72.29 黏土矿物X射线鉴定


续表


8)定量分析。矿物组合为S、I/S、It、Kao和C时的质量分数计算公式为:

岩石矿物分析第四分册资源与环境调查分析技术

式中:w(Kao)为高岭石的质量分数;w(C)为绿泥石的质量分数;w(S)为蒙皂石的质量分数;w(It)为伊利石的质量分数;w(I/S)为伊利石-蒙皂石混层的质量分数;I0.7nm(N)为N谱图上0.7nm衍射峰强度;I1.0nm(550℃)为550℃谱图上1.0nm衍射峰强度;h0.358nm(EG)为EG谱图上0.358nm衍射峰强度;h0.353nm(EG)为EG谱图上0.353nm衍射峰强度;I1.7nm(EG)为EG谱图上蒙皂石1.7nm衍射峰强度;I1.0nm(EG)为EG谱图上0.7nm衍射峰强度;h0.7nm(N)为N谱图上0.7nm衍射峰强度;h0.7nm(EG)为EG谱图上0.7nm衍射峰强度。
当只有Kao而无C,或只有C而无Kao时,其质量分数按下式计算:

岩石矿物分析第四分册资源与环境调查分析技术

当只有S而无I/S,或只有I/S而无S时,其质量分数按下式计算:

岩石矿物分析第四分册资源与环境调查分析技术

72.9.2.3 岩石荧光显微镜鉴定方法
方法提要
试样经切片、磨光切片、粘片、磨制薄片后,放置于荧光显微镜下观察鉴定。荧光显微镜是以紫外光为光源。紫外光可激发储油岩石中能够发光的烃类物质产生荧光。观察分析这些发光物质本身的变化及其与岩石结构、构造的相互关系,从而判断有机质类型、变质程度、有效储集空间、油气运移等问题。
仪器和设备
荧光显微镜 具透射光系统,反射光系统和照相设备,并有紫外、蓝激光滤光片和吸收滤光器。
偏光显微镜。
冰箱。
试剂和材料
铁氰化钾。
丙三醇。
盐酸。
氯仿。
茜素红。
分析步骤
1) 选择。岩心、岩屑试样均须在紫外光下按分析项目选择有代表性的部分。用于荧光显微镜鉴定的试样,在制片前不得用有机溶剂浸泡。选 1 块与荧光试样相同岩性的岩屑,做偏光制片,以利于荧光薄片对照观察。
2) 制片。制作荧光薄片的试样,若裂缝发育或岩石疏松,则用 T-2 或 K-2 型 502胶进行胶结; 对渗胶较差的油砂岩可用 K -1 型 502 胶。若胶仍渗不进去,可改用提纯石蜡胶结平面。然后粗磨、细磨、精磨、磨制成镜面。载片须用毛玻璃。待试样水分干后再进行载片。含油试样岩片中含气泡时不能超过岩片面积的 3%; 一般试样岩片中气泡含量不得超过岩片面积的 1%。荧光薄片一般不盖片,但易潮解、挥发的试样须盖片。
3) 镜下鉴定。荧光显微镜下鉴定内容包括:
A.沥青发光颜色、波长定量与成分关系。为解决这问题选用了标准油样测定其发光颜色与波长关系,并确定属何种沥青,见表72.30,从表中可以看出油质沥青主颜色为黄、绿、蓝,其波长范围为 450~600nm,胶质沥青主色为橙色、褐橙色,沥青质沥青主色为褐色。
表72.30 沥青的发光颜色、波长与成分


B.发光强度定量。发光强度主要反映岩石中油的含量,岩石中油的含量越高,则油的荧光发光强度也趋大。在荧光图像处理中,用亮度这个数值来定量表示沥青发光强度(表72.31) 。
表72.31 发光强度与沥青的含量关系


C.含油范围定量。① 各种沥青含量 (油质、胶质、沥青质) 。② 含油面积比,此含油面积比在一定程度上反映了含油岩石中含油的范围。可近似代替孔隙含量,但该数值比孔隙含量高,因为还包括油浸染的范围。
D.真假含油显示区别见表72.32。
表72.32 真假含油显示区别


荧光显微镜对油水界面的判断及预示含油实效
1) 油水界面判断。一般含油井段岩样发光显示好,所有孔隙均含油,缝合线、晶间孔隙、粒间孔隙、晶体解理受浸染发光极好; 油水界面附近井段发光显示不均匀现象,基质发光差,部分孔隙发光; 而含水试样其缝及岩石均不发光。从含油的纵向变化可以判断出油水界面。
2) 含油实效预示。通过荧光地质工作并充分了解该区及该井的地质情况,综合考虑有关资料,如岩心 (岩屑) 、钻井、气测、泥浆录井、井径、地球物理测井,现场荧光分析等资料,才能作出是否含油的判断。
72.9.2.4 岩石试样阴极发光鉴定方法
电子束轰击到试样上,激发试样中发光物质产生荧光,称阴极发光。
方法提要
试样制成薄片,置于阴极发光显微镜下,启动显微镜阴极发光系统的高压装置,电子轰击到试样上,激发试样中发光物质产生荧光。观察矿物发光颜色,鉴定矿物成分,孔隙成因和结构构造等内容。
仪器和设备
阴极发光系统装置。
偏光显微镜、图像分析仪和图像监控系统。
自动摄影装置。
能谱仪。
X-射线强度溢漏监视器。
鉴定依据
1) 阴极发光颜色与微量元素的关系。阴极发光与能谱仪配套使用可确定阴极发光颜色与微量元素的关系,见表72.33。
表72.33 阴极发光颜色与微量元素的关系


2) 常见矿物的阴极发光颜色。常见矿物的阴极发光颜色描述见表72.34。
表72.34 矿物的阴极发光颜色描述


续表


3) 岩石类型、温度与石英的阴极发光颜色之间的关系。岩石类型、温度与石英的阴极发光颜色之间的关系见表72.35。
表72.35 岩石类型、温度与石英发光类型之间的关系


鉴定内容
碎屑岩阴极发光鉴定内容包括鉴定矿物成分、矿物发光颜色、孔隙成因的判别等; 碳酸盐岩发光鉴定内容包括鉴定碳酸盐岩的组分、孔隙成因、孔隙演化、结构构造等; 对于岩浆岩要根据阴极发光与偏苯三甲酸三辛酯光对应观察,鉴定岩浆岩的矿物成分等; 变质岩主要鉴定其中主要矿物、次要矿物和其他矿物的成分,以及结构构造等内容; 火山碎屑岩要鉴定其中主要矿物、次要矿物的,其他矿物的发光颜色等。

1.基本原理

将阴极发光仪与光学显微镜连接,就是阴极发光显微镜。阴极发光是固体物质的一种表面物理荧光现象,由阴极发出的电子束经阳极加速后快速轰击到固体物质表面,导致物质发出可见光,称为阴极发光。导致这种发光现象的因素目前认为主要有两种:矿物中存在的某些元素作为激活剂导致发光和晶体结构缺陷导致发光。阴极发光的颜色和强度受激活剂的种类、含量、价态等多种因素的影响。

2.样品要求

(1)阴极发光样品要求是光片或不加盖片的薄片,薄片的厚度可略大于普通薄片。

(2)制片用的胶需耐高温且不发光。

3.地质应用

阴极发光是表征矿物岩石学特征的一种常用技术手段,在沉积岩、变质岩、花岗岩及金矿床研究、宝玉石鉴定等方面都有着广泛的应用。尤其是在沉积学及石油地质学研究领域,对石英和方解石的发光特征已经进行了很多的研究,形成了一套系统理论,在沉积成岩型矿床和石英脉型金矿床研究中得到了广泛的应用。

(1)利用阴极发光技术观察岩石光薄片中矿物的发光特征,借此识别矿物、获取其微观结构特征。

(2)阴极发光技术能有效地观察岩石孔隙和裂缝,从而进行碎屑岩的胶结作用和孔隙率演化研究。

(3)根据碳酸盐类矿物有较好的发光现象,阴极发光技术应用于碳酸盐类矿物的研究较成熟,能有效鉴定出成岩成矿作用事件的序列,推断出成岩过程中矿物的替代。此外,阴极发光能恢复碳酸盐重结晶作用前的原岩结构,成为测定其蚀变历史和成矿序列的有效方法。



新疆和田玉怎么鉴别?
答:目前鉴别的最好途径就是送检相关部门进行相关的检测。新疆和田玉产品质量监督检验中心,升格为国家和田玉产品质量监督检验中心。该中心是新疆地区乃至全国质检系统中和田玉产品质量检测能力最强、检测手段最齐备、综合实力最强的实验室。负责制定《和田玉》国家标准和《和田玉实物标准样品》,正在开展“染色和田玉...

钻石与相似石(仿钻)的测试仪器
答:(8)如果用热导型莫桑石钻石分辨仪,经上述操作后,是钻石,发光二极管可以亮到钻石区,莫桑石只能点亮到莫桑石区,而不能到达钻石区。因为莫桑石的导热率略低于钻石,仪器是按照它们的导热率来设定的,所以该仪器能区分钻石与莫桑石。 4.操作中必须注意的事项 (1)操作时必须根据环境温度与宝石大小(克拉数)设置初始值(...

储油气层的检测方法是什么?
答:2.仪器分析仪器分析包括扫描电镜、电子探针波谱及能谱分析、X衍射分析、阴极发光及荧光显微镜、包裹体冷热台测定等。 1)扫描电镜和电子探针波谱及能谱分析电子束轰击在样品上能产生各种信息,包括二次电子、背散射电子、X射线、阴极发光、透射电子等(图2—1)。 接收二次电子,背散射电子成像的仪器为扫描电子显微镜—简...

定量分析中实验条件的选择
答:电子探针的分析点应保证位于罗兰图上,这对那些具有阴极发光的试样不困难;但对于一些不发光试样,特别是对于那些粒径只有几个微米的包体却并不容易。 在进行...在X射线能谱分析中,很少考虑背景测量,而多用计算法实现背景校正。在X射线波谱分析中,几乎总是用实测的方法进行背景校正。 一般情况下,均假定谱峰中心处的...

用电子显微镜任何小的粒子都可以观察到吗?
答:不是,如果要观察的粒子直径小于电子波波长的话就看不到。

沉积岩中的胶结物成分对岩石的工程性质有何影响
答:假设片中有大量碳酸盐胶结物不能确定类型,x射线显示为白云石,只需要鉴定其铁含量就能确定矿物,当然如果连胶结物都不认识,x射线显示石英,你非把这个做胶结物,那就没办法了。阴极发光也是同样道理,首先你得知道,哪些是胶结物,哪些不是,在加以判断,在阴极发光下 铁含量高的胶结物 一般发红色光...