世界上有哪些著名的猜想?

作者&投稿:戢尝 (若有异议请与网页底部的电邮联系)
世界有多少个著名猜想~

正确答案:无数个。 如: 世界四大著名猜想证明简释——蜂窝猜想,开普勒猜想,四色猜想,庞加莱猜想 展示中国本土文化雄风,粗略证明世界有名难题;希望同道多多指教指点,与我中华同命共运同心;本人知识见解极有局限,失误错误不当之处难免;还望大家高师不吝斧正,荣雨先表斧正赐教之谢!!!!!!! 一、蜂窝猜想证明简释 1、点的基本知识:一般认为是构成线的最小单位。 2、a.线是由点的单排连接而成的。b线的宽度是由点的本身宽度决定的。c线的长度是由点单排连接的个数构成。 3、以上为基础得出以下的结论:A 线中的任何一点都是唯一的。B 无重叠的,也就是说线上的任意一点被去掉;所得的结果是:a 线断了,b 线短了,c 线成点了。 4、因为点是构成线的最小单位,所以最短的线是两点构成的。 5、面是由线的合围而成的,所以面积最小的面是由三点构成的三线连接而成的。所以这个面也是正三角形。 6、这里所连的线段一般认为是直线段(曲线以有机会再探讨)。因为圆心角是360度。正三角形的每个内角是60度,所以六个最小正三角形合围一点的平面图形是正六边形。因为最小三角形的线段最短,点数最少,所以以上组成的正六边形是最小正三角形的延伸。 7、于是将蜂窝洞看做是点,蜂窝猜想就一目了然了。 二、开普勒猜想证明简释 1、根据最小平面来设计一个点数最少的最小立体,在平面外一点,使这一点与平面的三点相互连接,就可以看到四点构成六线的四面的正三角体,从而实现了四点中的任意一点与其它三点的连接距离相等并最短。这就使其空间利用率最高。 2、根据蜂窝猜想的扩大模式,实现最小正三边形四边的扩大化并用构成最小三角立体的原理扩大正方立体范围。将所谓的填充球看作是点,那么开普勒猜想就迎刃而解了。 三、四色猜想证明简释 1、四色猜想实际上是在同一平面内,面与面在其边周长的制约下实现周边长的最大化连接面的应用方面的问题。 2、根据点构成线的原则,线构成面的原则,在同一平面内前提下,得出结论:A 两个相邻连接的点只能构成线,B 面与面的连接最少是最短的线段。C 相连接的两个平面的同一段位的线段,没有第三个平面的线段连接的余地。 3、实现周长边完全利用以最小正三边为起点,将三条线段各延长一点的距离,使其点与正三边形的顶点能构成三边形。得出结论:A 最小的正三边形最多能连接三个边的平面图形,B 如果被连接的还是三边形,用最大化利用边的方式继续发展。可以看到三边形最大化连接群的特点是:中心的的三边形连接三个相邻相互连接的三边形,形成了四个平面四个都有共同段位边的图形。C 同时这个三边形也被三个相邻隔离不能与第四个平面边接了。D 在同一平面内,两点构成的最短线段上最多能使两个平面相连接。 4、根据以上的结论综合推出:将四个平面填充四种颜色就可以满足四色猜想了, 5、画蛇添足的戏言:至于三色填充就更简单了,在地图我没有找到一个真正三角形的国家,所以它们的周边长利用率不是最高的,毕竟平面地图上距平面严格划分有着一定的距离,所以被包围的那个就不用填充颜色了,就是空白了,哈哈哈…………!!!!是不是说还有公海啊?哈哈!!!这样可能要有争议,但我保守四色猜想,决不会小沟翻船的。哈哈!!!关于地图的平面利用只能说到此了,对于国家来说一个地图不是一个平面所能够解决的问题了,即所谓领土,领空,领海。至少我感觉用“版图”这个词相对来说比地图更恰当一些,你说是吗?朋友?! 四、庞加莱猜想证明简释 1、庞加莱猜想以此类推,知道直线段是多少度,弧线是多少度就行了,更为简易,这个是我们中国人做出来的,我就不多言了,我只说一句四点正三角立体是它的核心,无此核心,能有正确的庞加莱猜想证明是有不可能的。

世界三大数学猜想即费马猜想、四色猜想和哥德巴赫猜想。
费马猜想的证明于1994年由英国数学家安德鲁·怀尔斯(Andrew Wiles)完成,遂称费马大定理。
四色猜想的证明于1976年由美国数学家阿佩尔(Kenneth Appel)与哈肯(Wolfgang Haken)借助计算机完成,遂称四色定理。
哥德巴赫猜想尚未解决,最好的成果(陈氏定理)乃于1966年由中国数学家陈景润取得。这三个问题的共同点就是题面简单易懂,内涵深邃无比,影响了一代代的数学家。

四色定理的内容及提出
四色问题的内容是:“任何一张平面地图只用四种颜色就能使具有共同边界的国家着上不同的颜色。”用数学语言表示,即“将平面任意地细分为不相重叠的区域,每一个区域总可以用1,2,3,4这四个数字之一来标记,而不会使相邻的两个区域得到相同的数字。”
这里所指的相邻区域,是指有一整段边界是公共的。如果两个区域只相遇于一点或有限多点,就不叫相邻的。因为用相同的颜色给它们着色不会引起混淆。

一、四色猜想
世界近代三大数学难题之一。四色猜想的提出来自英国。1852年,毕业于伦敦大学的弗南西斯.格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家着上不同的颜色。”这个结论能不能从数学上加以严格证明呢?他和在大学读书的弟弟格里斯决心试一试。兄弟二人为证明这一问题而使用的稿纸已经堆了一大叠,可是研究工作没有进展。
1852年10月23日,他的弟弟就这个问题的证明请教他的老师、著名数学家德.摩尔根,摩尔根也没有能找到解决这个问题的途径,于是写信向自己的好友、著名数学家哈密尔顿爵士请教。哈密尔顿接到摩尔根的信后,对四色问题进行论证。但直到1865年哈密尔顿逝世为止,问题也没有能够解决。
1872年,英国当时最著名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色猜想成了世界数学界关注的问题。世界上许多一流的数学家都纷纷参加了四色猜想的大会战。1878~1880年两年间,著名的律师兼数学家肯普和泰勒两人分别提交了证明四色猜想的论文,宣布证明了四色定理,大家都认为四色猜想从此也就解决了。
11年后,即1890年,数学家赫伍德以自己的精确计算指出肯普的证明是错误的。不久,泰勒的证明也被人们否定了。后来,越来越多的数学家虽然对此绞尽脑汁,但一无所获。于是,人们开始认识到,这个貌似容易的题目,其实是一个可与费马猜想相媲美的难题:先辈数学大师们的努力,为后世的数学家揭示四色猜想之谜铺平了道路。
进入20世纪以来,科学家们对四色猜想的证明基本上是按照肯普的想法在进行。1913年,伯克霍夫在肯普的基础上引进了一些新技巧,美国数学家富兰克林于1939年证明了22国以下的地图都可以用四色着色。1950年,有人从22国推进到35国。1960年,有人又证明了39国以下的地图可以只用四种颜色着色;随后又推进到了50国。看来这种推进仍然十分缓慢。电子计算机问世以后,由于演算速度迅速提高,加之人机对话的出现,大大加快了对四色猜想证明的进程。1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿判断,终于完成了四色定理的证明。四色猜想的计算机证明,轰动了世界。它不仅解决了一个历时100多年的难题,而且有可能成为数学史上一系列新思维的起点。不过也有不少数学家并不满足于计算机取得的成就,他们还在寻找一种简捷明快的书面证明方法。
二、哥德巴赫猜想
世界近代三大数学难题之一。哥德巴赫是德国一位中学教师,也是一位著名的数学家,生于1690年,1725年当选为俄国彼得堡科学院院士。1742年,哥德巴赫在教学中发现,每个不小于6的偶数都是两个素数(只能被和它本身整除的数)之和。如6=3+3,12=5+7等等。
公元1742年6月7日哥德巴赫(Goldbach)写信给当时的大数学家欧拉(Euler),提出了以下的猜想:
(a) 任何一个>=6之偶数,都可以表示成两个奇质数之和。
(b) 任何一个>=9之奇数,都可以表示成三个奇质数之和。
这就是着名的哥德巴赫猜想。欧拉在6月30日给他的回信中说,他相信这个猜想是正确的,但他不能证明。叙述如此简单的问题,连欧拉这样首屈一指的数学家都不能证明,这个猜想便引起了许多数学家的注意。从费马提出这个猜想至今,许多数学家都不断努力想攻克它,但都没有成功。当然曾经有人作了些具体的验证工作,例如: 6 = 3 + 3, 8 = 3 + 5, 10 = 5 + 5 = 3 + 7, 12 = 5 + 7, 14 = 7 + 7 = 3 + 11,16 = 5 + 11, 18 = 5 + 13, . . . . 等等。有人对33×108以内且大过6之偶数一一进行验算,哥德巴赫猜想(a)都成立。但验格的数学证明尚待数学家的努力。
从此,这道著名的数学难题引起了世界上成千上万数学家的注意。200年过去了,没有人证明它。哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”。到了20世纪20年代,才有人开始向它靠近。1920年、挪威数学家布爵用一种古老的筛选法证明,得出了一个结论:每一个比大的偶数都可以表示为(99)。这种缩小包围圈的办法很管用,科学家们于是从(9十9)开始,逐步减少每个数里所含质数因子的个数,直到最后使每个数里都是一个质数为止,这样就证明了“哥德巴赫”。
目前最佳的结果是中国数学家陈景润於1966年证明的,称为陈氏定理(Chen‘s Theorem) ? “任何充份大的偶数都是一个质数与一个自然数之和,而后者仅仅是两个质数的乘积。” 通常都简称这个结果为大偶数可表示为 “1 + 2 ”的形式。
在陈景润之前,关於偶数可表示为 s个质数的乘积 与t个质数的乘积之和(简称“s + t ”问题)之进展情况如下:
1920年,挪威的布朗(Brun)证明了 “9 + 9 ”。
1924年,德国的拉特马赫(Rademacher)证明了“7 + 7 ”。
1932年,英国的埃斯特曼(Estermann)证明了 “6 + 6 ”。
1937年,意大利的蕾西(Ricei)先后证明了“5 + 7 ”, “4 + 9 ”, “3 + 15 ”和“2 + 366。
1938年,苏联的布赫 夕太勃(Byxwrao)证明了“5 + 5 ”。
1940年,苏联的布赫 夕太勃(Byxwrao)证明了 “4 + 4 ”。
1948年,匈牙利的瑞尼(Renyi)证明了“1 + c ”,其中c是一很大的自然 数。
1956年,中国的王元证明了 “3 + 4 ”。
1957年,中国的王元先后证明了 “3 + 3 ”和 “2 + 3 ”。
1962年,中国的潘承洞和苏联的巴尔巴恩(BapoaH)证明了 “1 + 5 ”, 中国的王元证明了“1 + 4 ”。
1965年,苏联的布赫 夕太勃(Byxwrao)和小维诺格拉多夫(BHHopappB),及 意大利的朋比利(Bombieri)证明了“1 + 3 ”。
1966年,中国的陈景润证明了 “1 + 2 ”。
最终会由谁攻克 “1 + 1 ”这个难题呢?现在还没法预测。
三、费尔马猜想
也叫费马大定理,又被称为“费马最后的定理”,由法国数学家费马提出。
它断言当整数n >2时,关于x, y, z的方程 x^n + y^n = z^n 没有正整数解。
被提出后,经历多人猜想辩证,历经三百多年的历史,最终在1995年被英国数学家安德鲁·怀尔斯证明。
德国佛尔夫斯克宣布以10万马克作为奖金奖给在他逝世后一百年内,第一个证明该定理的人,吸引了不少人尝试并递交他们的“证明”。在一战之后,马克大幅贬值,该定理的魅力也大大地下降。
四、丘成桐猜想
“弦”理论认为,宇宙是十维时空,即通常的四维时空和一个很小的六维空间。
意大利著名几何学家卡拉比提出,复杂的高维空间是由多个简单的多维空间“粘”在一起,也就意味着高维空间可通过一些简单的几何模型拼装得到。
1975年,数学家丘成桐等人攻克了陈类为负和零的“卡拉比猜想”,但未能解决第一陈类为正的问题,丘成桐提出,可将其转化为代数几何的稳定性问题,这就是困扰国际学界几十年的“丘成桐猜想”。
2014年5月,陈秀雄、唐纳森和孙崧给出了“丘成桐猜想”的完整证明。
五、黎曼猜想
黎曼猜想是关于黎曼ζ函数ζ(s)的零点分布的猜想,由数学家黎曼于1859年提出。希尔伯特在第二届国际数学家大会上提出了20世纪数学家应当努力解决的23个数学问题,被认为是20世纪数学的制高点,其中便包括黎曼假设。现今世界七大数学难题中也包括黎曼猜想。
与费尔马猜想时隔三个半世纪以上才被解决,哥德巴赫猜想历经两个半世纪以上屹立不倒相比,黎曼猜想只有一个半世纪的纪录还差得很远,但它在数学上的重要性要远远超过这两个大众知名度更高的猜想。黎曼猜想是当今数学界最重要,最期待解决的数学难题。

一、四色猜想
世界近代三大数学难题之一。四色猜想的提出来自英国。1852年,毕业于伦敦大学的弗南西斯.格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家着上不同的颜色。”这个结论能不能从数学上加以严格证明呢?他和在大学读书的弟弟格里斯决心试一试。兄弟二人为证明这一问题而使用的稿纸已经堆了一大叠,可是研究工作没有进展。
1852年10月23日,他的弟弟就这个问题的证明请教他的老师、著名数学家德.摩尔根,摩尔根也没有能找到解决这个问题的途径,于是写信向自己的好友、著名数学家哈密尔顿爵士请教。哈密尔顿接到摩尔根的信后,对四色问题进行论证。但直到1865年哈密尔顿逝世为止,问题也没有能够解决。
1872年,英国当时最著名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色猜想成了世界数学界关注的问题。世界上许多一流的数学家都纷纷参加了四色猜想的大会战。1878~1880年两年间,著名的律师兼数学家肯普和泰勒两人分别提交了证明四色猜想的论文,宣布证明了四色定理,大家都认为四色猜想从此也就解决了。
11年后,即1890年,数学家赫伍德以自己的精确计算指出肯普的证明是错误的。不久,泰勒的证明也被人们否定了。后来,越来越多的数学家虽然对此绞尽脑汁,但一无所获。于是,人们开始认识到,这个貌似容易的题目,其实是一个可与费马猜想相媲美的难题:先辈数学大师们的努力,为后世的数学家揭示四色猜想之谜铺平了道路。
进入20世纪以来,科学家们对四色猜想的证明基本上是按照肯普的想法在进行。1913年,伯克霍夫在肯普的基础上引进了一些新技巧,美国数学家富兰克林于1939年证明了22国以下的地图都可以用四色着色。1950年,有人从22国推进到35国。1960年,有人又证明了39国以下的地图可以只用四种颜色着色;随后又推进到了50国。看来这种推进仍然十分缓慢。电子计算机问世以后,由于演算速度迅速提高,加之人机对话的出现,大大加快了对四色猜想证明的进程。1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿判断,终于完成了四色定理的证明。四色猜想的计算机证明,轰动了世界。它不仅解决了一个历时100多年的难题,而且有可能成为数学史上一系列新思维的起点。不过也有不少数学家并不满足于计算机取得的成就,他们还在寻找一种简捷明快的书面证明方法。

哥德巴赫猜想
四色猜想命题
费马大定理
丘成桐猜想
黎曼猜想

“哥得巴赫猜想”是怎么回事儿?
答:…等等。有人对33×108以内且大过6之偶数一一进行验算,哥德巴赫猜想(a)都成立。但严格的数学证明尚待数学家的努力。从此,这道著名的数学难题引起了世界上成千上万数学家的注意。200年过去了,没有人证明它。哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的"明珠"。 人们对哥德巴赫猜想难题的热情,...

什么是哥尔巴赫猜想??
答:1966年,我国著名数学家陈景润攻克了“1+2”,也就是:“任何一个足够大的偶数,都可以表示成两个数之和,而这两个数中的一个就是奇质数,另一个则是两个奇质数的和。”这个定理被世界数学界称为“陈氏定理”。由于陈景润的贡献,人类距离哥德巴赫猜想的最后结果“1+1”仅有一步之遥了。但为了...

数学领域著名的“哥德巴赫猜想”的大致意思是:任何一个大于2的偶数总能...
答:1966年, 中国 数学家陈景润证明了“任何一个 充分 大的偶数都可以表示成一个素数与另一个素因子不超过2个的数之和”,简称“1+2”。这是迄今世界上对“哥德巴赫猜想” 研究 的最佳 成果 。②报告文学。徐迟作。1978年发表。数学家陈景润从小酷爱数学。 进入 厦门 大学数学系后,他又与世界著名...

世界十大数学题
答:他们对一个个偶数开始进行验算,一直算到3.3亿,都表明猜想是正确的。但是对于更大的数目,猜想也应是对的,然而不能作出证明。欧拉一直到死也没有对此作出证明。从此,这道著名的数学难题引起了世界上成千上万数学家的注意。200年过去了,没有人证明它。哥德巴赫猜想由此成为数学皇冠上一颗可望不可及...

至今仍有哪些没有得到证明的数学猜想?
答:首先,有从1859年被提出至今,没有得到证明的黎曼猜想。1900年,德国数学家希尔伯特在第二届国际数学家大会上提出了20世纪数学家应当努力解决的23个数学难题,被认为是20世纪数学的制高点,其中便包括黎曼猜想。时隔100年,黎曼猜想又被美国克雷数学研究所列为世界七大数学难题之一。同时还有ABC猜想,这些都是...

千禧年数学猜想有哪些?
答:3、庞加莱猜想:任何单连通闭3维流形同胚于3维球。4、Hodge猜想:任何Hodge类关于一个非奇异复射影代数簇都是某些代数闭链类的有理线形组合。5、Birch及Swinnerton-Dyer猜想:对于建立在有理数域上的每一条椭圆曲线,它在一处的L函数变为零的阶都等于该曲线上有理点的阿贝尔群的秩。6、Navier-...

哥德巴赫猜想到底有什么意义
答:啊,但那只是一种理想,按目前国际数学界的理论发展水平,看来在相当时期内是难以达到的。王元教授编辑了《哥德巴赫猜想》一书,汇集了世界上最优秀的论文20篇。他在该书前言中写道:“可以确信,在哥德巴赫猜想的研究中,有待于将来出现一个全新的数学观念”。这,已成为中国数学界同仁的共识。

世界有多少个著名猜想
答:正确答案:无数个。 如: 世界四大著名猜想证明简释——蜂窝猜想,开普勒猜想,四色猜想,庞加莱猜想 展示中国本土文化雄风,粗略证明世界有名难题;希望同道多多指教指点,与我中华同命共运同心;本人知识见解极有局限,失误错误不当之处难免;还望大家高师不吝斧正,荣雨先表斧正赐教之谢!!! 一...

麦田怪圈有哪些猜想?
答:麦田怪圈的猜想:据说,很多出现麦田怪圈的地方也会出现UFO。因此,有人认为麦田怪圈是地球以外高智慧生命体留下的记号,希望地球人类以同样的高智慧去消化这些讯息;也有人认为是地球上有奇异力量的人想通过麦田怪圈与天外沟通。事实上,对于神秘麦田怪圈的形成,各类科学家都试图去解释:气象学家估计这...

世界上有几个猜想?
答:心有多大,舞台就有多大,只要人存在,就不断地有猜想诞生,所以这个世界上的猜想是数不清的,上面举的只是一些著名的猜想而已,如果算上不怎么著名的呢?再算上不怎么有名气的...你不可能算出一个准数来...我这也算一个猜想吧...