实对称阵A 有三个不同特征值,一个对应的特征向量是(1,0,1)T ,可通过正交求另2个特征向量吗

作者&投稿:安康 (若有异议请与网页底部的电邮联系)
实对称矩阵同一个特征值不同的特征向量什么时候正交~

n*n的实对称矩阵一定存在 n个相互正交的特征向量,因为实对称矩阵可以特征值分解为 QDQ‘,其中 Q为正交矩阵,D为对角阵(对角线元素为特征值)。
这不是说相同特征值的不同的特征向量一定相互正交,而是说对于相同特征值也一定存在一组相互正交的特征向量。假设对于某个特征值(重根),你求得了它的一组不相互正交的特征向量,那么可以通过正交化把他们变成一组相互正交的特征向量。
证明如下:
设λ1,λ2是两个A的不同特征值,α1,α2分别是其对应的特征向量,有A * α1 = λ1 * α1,A * α2 = λ2 *α2分别取转置。
分别两边右乘α2和α1,得α1' * A' * α2 =λ2 * α1' * α2,α2' * A' * α1 =λ1 * α2' * α1
对应相减并注意到α2' * A' * α1=(α2' * A' * α1)'= α1' * A' * α2
所以 (λ1 - λ2) α1' * α2 = α1' * A' * α2 - α2' * A' * α1 = α1' * A' * α2 - α1' * A' * α2 =0
而 λ1 - λ2≠ 0
因此 α1' * α2 = 0
即 α1与α2 正交。

扩展资料:
实对称矩阵A的不同特征值对应的特征向量是正交的。实对称矩阵A的特征值都是实数,特征向量都是实向量。
n阶实对称矩阵A必可对角化,且相似对角阵上的元素即为矩阵本身特征值。若λ0具有k重特征值 必有k个线性无关的特征向量,或者说必有秩r(λ0E-A)=n-k,其中E为单位矩阵。
把一个m×n矩阵的行,列互换得到的n×m矩阵,称为A的转置矩阵,记为A'或AT。
矩阵转置的运算律(即性质):
1.(A')'=A
2.(A+B)'=A'+B'
3.(kA)'=kA'(k为实数)
4.(AB)'=B'A'
若矩阵A满足条件A=A',则称A为对称矩阵。由定义知对称矩阵一定是方阵,而且位于主对角线对称位置上的元素必对应相等,即aij=aji对任意i,j都成立。
参考资料来源:百度百科——实对称矩阵

同一特征值的特征向量的线性和(非0)也为该特征值特征向量,特征值3可以有两个不共线特征向量,从上面一句看出,可以有正交的两个特征向量。
实对称矩阵A的特征值都是实数,特征向量都是实向量。n阶实对称矩阵A必可对角化,且相似对角阵上的元素即为矩阵本身特征值。
特征向量对应的特征值是它所乘的那个缩放因子。特征空间就是由所有有着相同特征值的特征向量组成的空间,还包括零向量,但要注意零向量本身不是特征向量。
线性变换的主特征向量是最大特征值对应的特征向量。
扩展资料:
有限维向量空间上的一个线性变换的谱是其所有特征值的集合。
例如,三维空间中的旋转变换的特征向量是沿着旋转轴的一个向量,相应的特征值是1,相应的特征空间包含所有和该轴平行的向量。该特征空间是一个一维空间,因而特征值1的几何重次是1。特征值1是旋转变换的谱中唯一的实特征值。
谱定理在有限维的情况,将所有可对角化的矩阵作了分类:它显示一个矩阵是可对角化的,当且仅当它是一个正规矩阵。注意这包括自共轭(厄尔米特)的情况。
因为对角化矩阵T的函数f(T)(譬如波莱尔函数f)的概念是清楚的。在采用更一般的矩阵的函数的时候谱定理的作用就更明显了。
参考资料来源:百度百科——实对称矩阵

实对称矩阵
它对应不同特征值的基础解系是正交的
因此相同的特征值未必正交
所以有重根的时候就不能用正交直接求出另外两个
只能求到一个

三个不同特征值的特征向量两两正交,而知道其中一个特征向量求其他两个,不能保证两两正交。只能保证后两者和前者分别正交。而有重根就不需要两两正交,只需要线性无关即可。
所以有重根和知2求3无误