细胞生物学的研究内容和范围及意义

作者&投稿:包背 (若有异议请与网页底部的电邮联系)
细胞生物学主要研究的内容是什么?~

细胞生物学是研究细胞结构、功能及生活史的一门科学。细胞生物学由细胞学发展而来,细胞学是关于细胞结构与功能(特别是染色体)的研究。现代细胞生物学从显微水平,超微水平和分子水平等不同层次研究细胞的结构、功能及生命活动。在我国基础学科发展规划中,细胞生物学与分子生物学,神经生物学和生态学并列为生命科学的四大基础学科。
细胞生物学以细胞为研究对象,从细胞的整体水平、亚显微水平、分子水平等三个层次,以动态的观点,研究细胞和细胞器的结构和功能、细胞的生活史和各种生命活动规律的学科。细胞生物学是现代生命科学的前沿分支学科之一,主要是从细胞的不同结构层次来研究细胞的生命活动的基本规律。从生命结构层次看,细胞生物学位于分子生物学与发育生物学之间,同它们相互衔接,互相渗透。
运用近代物理学和化学的技术成就和分子生物学的方法、概念,在细胞水平上研究生命活动的科学,其核心问题是遗传与发育的问题。

  细胞生物学(Cell Biology)是在显微、亚显微和分子水平三个层次上,研究细胞的结构、功能和各种生命规律的一门科学。
  细胞生物学由Cytology发展而来,Cytology是关于细胞结构与功能(特别是染色体)的研究。现代细胞生物学从显微水平、超微水平和分子水平等不同层次研究细胞的结构、功能及生命活动。
  在我国基础学科发展规划中,细胞生物学与分子生物学、神经生物学和生态学并列为生命科学的四大基础学科。

 从1839年M.J.施莱登和T.A.H.施旺的细胞学说问世以来,确立了细胞(真核细胞)是多细胞生物结构和生命活动的基本单位。但是长期以来,细胞学的研究偏重在结构方面。此后,在相邻学科的进展的影响下逐渐地发展到其他方面。例如在遗传学的带动下发展起细胞遗传学,加深了对染色体的认识;在生物化学的影响之下发展起细胞生化,用生化手段了解细胞各组分的生化组成和功能活动;在物理学、化学的渗透下形成了细胞化学,研究细胞的化学成分及其定位,这些都为细胞生物学的形成和发展打下了基础。
  20世纪50年代以来,关于细胞的超显微结构的研究,使人们对于光学显微镜下看不到的精细结构有了明确的认识。分子生物学、分子遗传学以原核生物为材料取得的成就,使人们了解到遗传密码、中心法则以及原核生物中基因表达的调节与控制等基本问题,这些都直接促进了细胞生物学的发展。但由于原核细胞不同于真核细胞,后者具有核膜,染色质除DNA外还含有组蛋白及非组蛋白,而且细胞质中的结构也比前者复杂得多。因此,还需要了解在原核生物得到的成就在多大程度上适用于真核细胞,研究遗传和发育在真核细胞中是如何操纵的。
  细胞生物学虽说是一个比较年轻的学科,从学术思想上却可以追溯到较早的年代。1883年德国胚胎学家W.鲁就阐述过关于遗传和发育的设想。他假定受精卵中包含着所有的遗传物质,后者在卵裂时不是平均地分配到子细胞中,这种不同质的分裂决定子细胞及其后代的命运。德国动物学家魏斯曼发展了这种想法,提出了种质学说,认为裂球的不均等分裂导致了细胞的分化。虽然这些见解都已证明是错误的,但是可以看出细胞生物学所要解决的问题在那时已被提出来了。以后E.B.威尔逊1927年在他的《细胞──在发育和遗传中》的巨著中明确指出:细胞是生命活动的基本单位,发育和遗传这些生命现象应当在细胞上研究。1934年,美国遗传学家和胚胎学家T.H.摩尔根在遗传学取得巨大成就之后,在企图融合发育与遗传的《胚胎学与遗传学》一书中写道:“可以设想,各原生质区域在开始时的差异会影响基因的活动,然后基因又反转过来影响原生质,后者就开始一系列新的、相应的反应。这样,我们可以勾画出胚胎各部分的逐步建立和分化。”但在摩尔根的年代,由于细胞学和其他相邻学科还未发生密切的联系,或者说其他学科尚未能在细胞水平上开展关于发育和遗传的研究,所以细胞生物学只能在50年代之后,各方面的条件逐渐成熟了,才得以蓬勃发展。 从研究内容来看细胞生物学的发展可分为三个层次,即:显微水平、超微水平和分子水平。从时间纵轴来看细胞生物学的历史大致可以划分为四个主要的阶段:
  第一阶段:从16世纪后期到19世纪30年代,是细胞发现和细胞知识的积累阶段。通过对大量动植物的观察,人们逐渐意识到不同的生物都是由形形色色的细胞构成的。
  第二阶段:从19世纪30年代到20世纪初期,细胞学说形成后,开辟了一个新的研究领域,在显微水平研究细胞的结构与功能是这一时期的主要特点。形态学、胚胎学和染色体知识的积累,使人们认识了细胞在生命活动中的重要作用。1893年Hertwig的专著《细胞与组织》(Die Zelle und die Gewebe)出版,标志着细胞学的诞生。其后1896年哥伦比亚大学Wilson编著的The Cell in Development and Heredity、1920年墨尔本大学Agar编著的Cytology 都是这一领域最早的教科书。
  第三阶段:从20世纪30年代到70年代,电子显微镜技术出现后,把细胞学带入了第三大发展时期,这短短40年间不仅发现了细胞的各类超微结构,而且也认识了细胞膜、线粒体、叶绿体等不同结构的功能,使细胞学发展为细胞生物学。De Robertis等人1924出版的普通细胞学(General Cytology)在1965年第四版的时候定名为细胞生物学(Cell Biology),这是最早的细胞生物学教材之一。
  第四阶段:从20世纪70年代基因重组技术的出现到当前,细胞生物学与分子生物学的结合愈来愈紧密,研究细胞的分子结构及其在生命活动中的作用成为主要任务,基因调控、信号转导、肿瘤生物学、细胞分化和凋亡是当代的研究热点。

这是我们书上的

(一)细胞通讯和细胞信号转导
(二)细胞增殖与细胞周期的调控
(三)细胞的生长和分化
(四)细胞的衰老和凋亡
(五)干细胞及其应用
(六)细胞工程

生命科学(生命科学/生物),一般生物学研究的生命现象和生命活动规律的科学。继又一个高速发展的学科,物理,化学,正朝着两个方向的宏观和微观的发展。宏观经济前景的研究已经发展到全球的生态系统,微分子方向发展的一面朝向。生物学及许多科学相结合,形成一个宽的各种边缘的科学的径向发展。
生物学的思想,从一开始,有两所学校,一个地方叫博物馆学校,实验学校。论生态博物馆学校,实验学校代表的遗传学和分子生物学的代表。
自20世纪40年代以来,生物吸收的数学,物理和化学,并逐步发展成为一个精确的,量化的,深入到分子水平的科学成果。
生物学家生物,形态结构,营养,以及它们的生态系统中的作用,如生物分为若干圆的发展历史的基础上。现在比较常见的了解地球上的生物圈分为五个王国:细菌,蓝细菌原核生物原核生物界的单细胞真核细胞原生生物,光自养的植物界,吸收不同的真菌提出吞食异养动物王国。

该病毒是一个非多孔的生命形式,它是由长链的核酸和蛋白壳构成的,该病毒不具有其自身的代谢机构,没有酶系统。病毒离开宿主细胞时,它变得有生命活动,不能独立的自我繁殖的化学物质。一旦进入宿主细胞,它可以利用的细胞的物质和能量,以及复制,转录和翻译的能力,并且,它是按照与包含在其自己的核酸中的遗传信息中产生的病毒作为新一代。

与来自其它生物体的基因的病毒的基因,也可以被突变和重组,因此是进化。由于病毒没有独立的代谢机构不能单独繁殖,它被认为是一个不完整的生命形式。比近年来发现的病毒样病毒甚至更简单,它是一个小RNA分子,蛋白质外??壳,但它可以在动物中引起疾病??。这些不完整的生命形式,存在的非寿险和寿险之间没有不可逾越的鸿沟。

原核细胞和真核细胞中的细胞有两种基本形式,它们反映了两个阶段的细胞进化。生物细胞的形态分为原核生物和真核生物,是现代生物学的一大进步。其主要特点是原核细胞的线粒体,叶绿体和其他的模具细胞器,染色体只有一个环状DNA分子,但不包括组蛋白和其他蛋白质,没有核膜。原来的生物主要是细菌。

的真核细胞是更复杂的结构的细胞。线粒体膜的双层膜的细胞核,遗传物质的细胞核和细胞质分离细胞器包。 DNA是一种长链的分子,狱卒蛋白和其它蛋白质合成的染色体。该核细胞有丝分裂和减数分裂,分裂复制的染色体平均分配到子细胞。原生生物是最原始的真核生物。

基于光自养的主要营养真核生物的植物。典型的植物细胞中,作为主要成分含有空泡核细胞壁纤维素。光合作用的细胞器 - 叶绿体。光合作用的植物作为电子供体光自养植物营养水,高一些的植物是寄生的,有几个能够捕捉小昆虫异养吸收更多的植物。

从单细胞绿藻类植物被子植物沿着适应光合作用的方向发展。高等植物的植物(固定的,并且吸收器官),茎(支持器官),分化的叶(光线和器官)的根。叶柄和众多分枝的茎的支撑片叶子开始各方获得最大的光吸收面积,细胞逐渐分化成专门进行光合作用,进行,涵盖了各种不同的组织。大多数植物通过有性生殖,形成配子体和孢子体世代交替的生活史。这家工厂是生态系统中最重要的生产,但在地球上的氧气的主要来源。

真菌吸收的主要营养真核生物。真菌具有细胞壁,细胞壁含有几丁质,含有纤维素的。几丁质是一种多糖,含有葡糖胺,昆虫和其他动物骨骼的主要成分,植物细胞中不含有几丁质。菌质体和光合色素。真菌的繁殖能力是非常不同的繁殖主要是无性繁殖或有性繁殖产生孢子的繁殖单位。真菌的分布是非常广泛的,在生态系统中的真菌是重要的分解。

基于动物的营养方式的真核生物吞噬。吞食异养捕获,吞咽,消化,吸收列复杂的过程。动物体的结构是发展沿着适应吞食异养方向。液泡形成的单细胞动物性食物摄入的食物后。去过消化的食物的食物泡中,然后通过膜进入细胞质中,与融合是细胞内消化的细胞质中的溶酶体。

的多细胞动物在进化过程中,正逐步取代细胞外消化,细胞内消化的食物被捕获的酶在消化道的消化腺的分泌,消化,吸收的小分子消化的营养物质通过消化道,通过环署负责系统输送至身体的各种细胞。

与此相适应,多细胞动物逐渐形成一个复杂的排泄系统,以及以外的呼吸系统的感官系统的复杂性,神经系统,内分泌系统和运动系统,等等。在所有的生物中,只有动物的身体结构发展到如此高级的职位。动物是消费者在生态系统中的有机食品。

生产者和分解者在发展初期的生活,生态系统的两环系统。真核细胞,尤其是动物,两个环生态系统发展的三环系统生产商,分解者和消费者的出现和发展。今天,丰富多彩的生活世界。

像病毒一样,病毒,植物,动物,生物的类型有许多鲜明的特点。和一系列各种类型的中间环节之间,并形成一个连续的谱系。确定的三大进化方向的营养在生态系统中的空间关系的互动。因此,双方的时间过程和空间发展过程的演变。在整个历史的时间和空间生命的生物关系。

生物学特性

不仅生物多样性,但也有一些共同的特征和属性。

的有机体的生物大分子的组合物的结构和功能,原则上是相同的。例如,各种生物蛋白单体是氨基酸,物种,但约20种,他们可用于所有的生物的功能是相同的;基本的代谢路径是相同的,所以在不同的生物体中。这是生化认同。身份显示深刻的生物团结。

生物具有的多层结构模型。对于病毒以外的所有活的东西由细胞组成的,该信元被构成的大量的原子和分子的异构系统。

从结构的角度来看,将细胞的动态系统,多的分子,例如蛋白质,核酸,脂类,多糖从信息理论的角度来看,细胞是遗传信息和代谢信息系统的转移,从化学的角度的观点中,细胞是小分子合成的复杂的大分子,从热力学的观点来看,细胞是开放式系统远离平衡...

在除了到细胞外,生物,以及其他的结构单元。细胞在细胞,分子,原子,在一个有组织的细胞,器官,器官系统,个体,生态系统,生物圈等。生物的各种结构单元,布置在一系列的复杂性和顺序结合关系根据水平,这是结构层次。许多低级别的本质和规律并没有出现在较高的水平。

其他还有很多,如生物有序的耗散结构,生物稳定性,连续性的生活,个人发展,生物进化,生态系统的相互关系等。

所有这些都说明,尽管有惊人的多样性的生活世界,但都有一个共同的生物物质基础,遵循的共同规律。对物质世界的是一个统一的生物品种。

生物学等多个学科,根据他们的研究对象,一些基本的研究方法 - 观察所描述的方法,比较的方法,实验方法,等等,但也有其自身的特点。生物学的实验既需要精确的分析,他们需要观察生活,积累广泛的各种层次的生活系统及其组件信息的整体和系统生物学的角度来看。今天,法律的生命系统理论进行定量的研究已经提到议程系统论的方法将是人们关注的一个新的研究方法。

生物学的一个分支。

早期的生物学主要是对自然的观察和描述,研究上的自然史和形态分类。生物最早的组分为生物学,植物学,动物学等学科。由于物种的多样性,但也越来越多的人的理解生物学的学科分工越来越细,往往分为多个科目。

按学科分类群划分,有利于了解的生物学特性和规律的自然一群来自四面八方的。但不管是什么的研究分类学,形态学,生理学,生物化学,生态学,遗传学,进化,等等,都多。

生物在地球的历史上有很长的发展历史,大约有1500万个物种已经灭绝了,拯救他们仍然在形成化石的地层。古生物专门的生物化石的研究历史;

这么多的生物类群,需要一个专门的学科研究的划分类群的分类;

形态学科的生物学研究中的植物和动物的形态,随着使用的显微镜??,相应成立了组织学和细胞学领域的超微结构的形态和深度;

生理学是研究生物功能的学科,生理学研究实验方法的基础上;

遗传学是研究生物性状的遗传和变异,澄清其规则和纪律;

胚胎学是研究生物个体发育的学科;

生态学是研究以及生物和生物之间的关系之间的生物和环境的学科。这项研究的范围,包括个体,种群,群落,生态系统和生物圈的水平。揭示生态系统中食物链,生产力,能量流和养分循环中的相关法律;

生物化学是研究生命物质的化学成分的各种化学过程和生物学科,一门学科迅速发展,在20世纪。生物化学的成就提高了人们认识生命的本质。生物化学是专注于生命的化学过程,在这个过程中的材料,产品和酶的作用机制。分子生物学是研究生物大分子的结构,还是研究生物大分子的结构和功能的关系,基因表达调控机制;

生物物理研究的生物,物理活动的生命和物理学的概念和方法的物理和化学过程的学科结构。早期生物物理学研究,生物发光,生物电。随着时代的发展,生物学,物理学,生产和干预的范围和生物物理研究水平的不断加深加宽的新概念。导致量子生物学,生物大分子的晶体结构和生物控制论中的一个小分支;

生物数学是数学和生物学相结合的产品,它的任务是研究生命过程的数学规律。

生物圈是一个复杂的系统,多层次,层次划分的学科,越来越多的人的关注,以揭示法律和其他级别的水平。例如:分子生物学,细胞生物学,个体生物学,人口生物学等。

总之,生物,新学科的不断分化,一些学科走向融合。生物学这种情况反映极其丰富的生物,也反映了生物蓬勃发展的景象。

生物学意义的研究

生物和人类生活的许多方面有着非常密切的关系。生物学,传统上一直作为一个基本的科学的基础,农业和医学上从事农业,畜牧业,农业,医疗,医药,保健,等。随着生物学的理论和方法的不断进步,它的应用也不断扩大。现在,生物学的影响已经扩展到食品,化工,环保,能源,冶金等。如果我们考虑到仿生学的因素,这也影响到机械,电子技术,信息技术和其他很多方面的发展。

生物学学科分公司

植物,孢粉学,动物学,微生物学,细胞生物学,分子生物学,分类学,动物行为学,生理学,细菌学,微生物生理学,微生物遗传学,微生物学,细胞学,细胞化学细胞遗传学,免疫学,胚胎学,优生学,悉生生物学,遗传学,分子遗传学,生态学,仿生学,生物物理学,生物力学,生物能量学,生物声学,生物化学,生物数学

细胞生物是什么意思?
答:细胞生物学是研究生命中最基本的单位——细胞的学科。在细胞生物学中,我们研究细胞的结构、功能、发育和分化方式,以及它们与身体其他组织和器官之间的相互作用。细胞生物学对于很多生命过程的了解都至关重要,对于解决很多重大疾病也具有重要的价值。细胞生物学涉及到的范围非常广泛,包括生物体的细胞有机...

如何将细胞生物学技术应用于药学研究?
答:取材范围和编写深度上难免有不当、疏漏甚至错误之处,恳请读者批评指正,以便再版时努力完善与修正。编者2005年9月作者简介:目录:第一章绪论(1)内容提要(1)第一节细胞生物学概述(1)一、细胞生物学的研究内容(1)二、细胞生物学发展简史(5)三、细胞生物学与诺贝尔奖(9)第二节细胞生物学与现代药学(11)一、细胞...

生物学宽度
答:生物学宽度是指生物学的领域范围之广,涵盖了从微观到宏观、从分子到生态系统的所有生物学研究内容。生物学的宽度体现在以下几个方面:1.分子生物学:研究生物大分子如核酸、蛋白质等的结构、功能及其相互作用。通过研究细胞信号转导、基因调控等机制,揭示生命活动的基本规律。2.细胞生物学:研究细胞的...

细胞生物学复习纲要与题解电子版哪里有啊?
答:1. 细胞生物学的任务是什么?它的范围都包括哪些?1) 任务:细胞生物学的任务是以细胞为着眼点,与其他学科的重要概念兼容并蓄,来阐明生物各级结构层次生命现象的本质。2) 范围:(1) 细胞的细微结构;(2) 细胞分子水平上的结构;(3) 大分子结构变化与细胞生理活动的关系及分子解剖;2. 你认为是谁首先发现了细胞?

美国细胞生物学专业排名:留学美国细胞生物学专业
答:研究氛围更加浓厚。美国具有发达的科研文化和良好的学术氛围,学生能够全面地接触到最新、最前沿的细胞生物学理论和技术。提高英文水平。留学美国可以让学生接受全英文的教学环境,有助于提高英语水平。增加就业机会。留学美国取得相关专业的学位可以助力学生在美国找工作,或者在全球范围内寻找更好的就业机会。

华中科大考研生物化学和分子生物学细胞生物学部分考试大纲
答:考试的对象为报考我校硕士研究生入学考试的准考考生。二、考试的学科范围:以翟中和、王喜忠、丁明孝主编的《细胞生物学》(面向二十一世纪教材。北京:高等教育出版社,2000年8月第1版;2007年8月第3版)的内容为基本考试范围。考查要点详见本大纲第二部分。三、评价目标 细胞生物学入学考试在考查基本...

医学细胞生物学与医学生物学学习内容的区别
答:所学的范畴不一样,医学细胞生物学是更细化更深入的分支学科,属于医学生物学的范畴之内的。简单讲,医学生物学学得比较泛,范围和涉及面比较广。而医学细胞生物学则更偏重于细胞方面的医学生物学,更精细更深化。细胞生物学(Cell Biology)是在显微、亚显微和分子水平三个层次上,研究细胞的结构、功能和...

细胞生物学的研究方法
答:由于广泛的学科交叉,细胞生物学虽然范围广阔,却不能像有些学科那样再划分一些分支学科──如象细胞学那样,根据从哪个角度研究细胞而分为细胞形态学、细胞化学等。如果要把它的内容再适当地划分,可以首先分为两个方面:一是研究细胞的各种组分的结构和功能(按具体的研究对象),这应是进一步研究的基础,把它们罗列出来,...

分子生物学和细胞生物学有什么区别和联系
答:简单说细胞生物学是从整体上研究细胞的结构和功能,如细胞物质组成和结构形式、物质运输、能量转换、细胞周期、信号转导、细胞分化等等,其实细胞生物学的内容被分之学科早已瓜分干净了,只有细胞骨架似乎还算纯细胞生物学研究的范围.分子生物学主要研究的是生物大分子核酸和蛋白,研究他们的结构、功能、调控以及...

现代细胞生物学的基本特征是什么?
答:当前细胞生物学的研究范围广泛。主要发展趋势就是用分子生物学及物理、化学方法,深入研究真核细胞基因表达的调节和控制,以期从根本上揭示遗传和发育的关系,以及细胞衰老、死亡和癌变的原因等基本生物学问题,并为把遗传工程技术应用于高等生物,改变细胞遗传性提供理论依据。从80 年代末期以来,生物大分子结构与...